Cho tam giác ABC, gọi M, N lần lượt là các điểm thuộc cạnh AB, AC sao cho AM = 1/2 MB; AN = 3NC, K là trung điểm MN. Biểu thị \(\overrightarrow{AK}=m.\overrightarrow{AB}+n.\overrightarrow{AC}\), tích m.n = ...
cho tam giác ABC có AB=9cm,AC=18cm.Trên cạnh AB,AC lần lượt lấy các điểm M,N sao cho AM=2 cm ,AN=4cm.trên các cạnh AB,AC lần lượt lấy D,E sao cho BD=CE. Gọi F,G lần lượt là trung điểm BC và DE. Đường thẳng GF cắt AB,AC lần lượt tại P và Q . Chứng minh tam giác APQ cân
Cho tam giác ABC đều. Các điểm M, N lần lượt di chuyển trên các cạnh AB, AC sao cho AM/MB+AN/NC=1. Tìm vị trí của M, N để diện tích tam giác AMN lớn nhất.
G/s: Tam giác đều ABC có cạnh bằng a
Đặt AM=x, AN =y, x, y dương và bé hơn a
=> MB=a-x, NC=a-y
Theo bài ra ta có:
\(\frac{x}{a-x}+\frac{y}{a-y}=1\)
\(\Leftrightarrow-\frac{x}{a-x}-\frac{y}{a-y}=-1\)
\(\Leftrightarrow1-\frac{a}{a-x}+1-\frac{a}{a-y}=-1\)
\(\Leftrightarrow\frac{a}{a-x}+\frac{a}{a-y}=3\)
\(\Leftrightarrow\frac{3}{a}=\frac{1}{a-x}+\frac{1}{a-y}\ge\frac{\left(1+1\right)^2}{a-x+a-y}=\frac{4}{2a-\left(x+y\right)}\)
\(\Leftrightarrow x+y\le\frac{2a}{3}\)
Diện tích tam giác AMN:
\(S_{\Delta AMN}=\frac{1}{2}AM.AN.\sin\widehat{MAN}=\frac{1}{2}.xy.\frac{\sqrt{3}}{2}\)
\(=\frac{\sqrt{3}}{4}.xy\le\frac{\sqrt{3}}{4}\frac{\left(x+y\right)^2}{4}\le\frac{\sqrt{3}}{16}\frac{4a^2}{9}=\frac{\sqrt{3}a^2}{36}\)
Dấu "=" xảy ra khi và chỉ khi: \(x=y=\frac{a}{3}\)
Vậy AM=1/3AB, AN=1/3AC thì diện tích tam giác AMN lớn nhất bằng \(\frac{\sqrt{3}a^2}{36}\)
Cho tam giác ABC vuông ở A, có cạnh AB=40cm, AC=60cm. M là 1 điểm thuộc cạnh AB sao cho AM=MB, N là 1 điểm thuộc cạnh BC sao cho BN=NC.
a, Tính diện tích các tam giác BMC, ANB.
b, Tính diện tích tứ giác AMNC.
c, Gọi O là điểm cắt nhau của 2 đoạn thẳng AN và CM. So sánh diện tích các tam giác AMO và CNO
\(S_{BMC_{ }_{ }}=\frac{BM.CA}{2}=\frac{20.60}{2}=600cm^2\)
Ta có MN là đường tb của tam giác ABC => MN//AC và MN.2 = AC
=> MN là đường cao của AB ,MN=30 cm
=> SABN=30.40:2=600cm2
b)SAMNC=(MN+AC) .AM:2=(30+60).20:2=900cm2
c)SMAC=MA.AC:2
SANC=CA.MA:2
=> SMAC=SANC=>SAMO=SCON
1 Cho tam giác ABC có AD=AE=BE, gọi M là trung điểm BC. Gọi K là điểm thuộc cạnh AC sao cho AK=1/3AC. CMR B,I,K thẳng hàng
2 Cho tam giác ABC có AD=AE=BE, gọi M là trung điểm BC, D,K lần lượt thuộc AB,AC sao cho AD=1/3 AB, AK=1/3 AC. CMR 3 đường thẳng AM, BK, CI đồng vị
Bài 2: Cho tam giác cân ABC (AB = AC) . Trên đường thẳng đi qua đỉnh A và song song với BC lấy hai điểm M và N sao cho A là trung điểm của MN ( M, B cùng thuộc nửa mặt phẳng bờ AC). Gọi H, I, K lần lượt là trung điểm của các cạnh MB, BC, CN.
a/ Tứ giác MNCB là hình gì? Vì sao?
b/ Chứng minh tứ giác AHIK là hình thoi.
Ta có: MN // AB (gt). \(\Rightarrow\left\{{}\begin{matrix}\widehat{MAB}=\widehat{ABC}\\\widehat{NAC}=\widehat{ACB}\end{matrix}\right.\) (so le trong).
Mà \(\widehat{ABC}=\widehat{ACB}\) (Tam giác ABC cân).
\(\Rightarrow\widehat{MAB}=\widehat{NAC.}\)
Xét tam giác AMB và tam giác ANC có:
+ AM = AN (A là trung điểm của MN).
+ AB = AC (gt).
+ \(\widehat{MAB}=\widehat{NAC}\left(cmt\right).\)
\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).
Xét tứ giác MNCB có: \(\text{MN // CB}\) (gt).
\(\Rightarrow\) Tứ giác MNCB là hình thang.
Mà \(\widehat{M}=\widehat{N}\) (Tam giác AMB = Tam giác ANC).
\(\Rightarrow\) Tứ giác MNCB là hình thang cân.
Cho tam giác ABC có AB > AC > BC. trên các cạnh AB, AC lấy lần lượt hai điểm M và N Sao cho BM = BC = CN. Gọi I là tâm đường tròn nội tiếp tam giác ABC. AI cắt đường tròn ngoại tiếp các tam giác ANM và ABC lần lượt tại E và F.
a) Chứng minh tứ giác AMIC nội tiếp.
b) So sánh IE và IF
Cho tam giác abc, ab=ac. Trên cạnh ab và ac lần lượt lấy 2 điểm m và n sao cho am=an. Gọi e và d lần lượt là trung điểm của mn và bc. Cmr: a d e thẳng hàng
Xét tam giác AMN có AM = AN nên tam giác AMN cân tại A.
Vậy thì trung tuyến AD chính là phân giác của góc \(\widehat{MAN}\)
Xét tam giác ABC có AB = AC nên tam giác ABC cân tại A.
Vậy thì trung tuyến AE chính là phân giác của góc \(\widehat{BAC}\)
Từ đó ta có D, E cùng thuộc tia phân giác của góc A hay A, D, E thẳng hàng.
Cho tam giác ABC gọi điểm D nằm trên cạnh BC sao cho BD=2DC, E là trung điểm của AD. Một đường thẳng bất kì qua E và cắt các cạnh AB AC , lần lượt tại M N. Tính tỉ số \(\dfrac{AB}{AM}+2\dfrac{AC}{AN}\)
cho tam giác abc, đường thẳng d song song với cạnh BC cắt các cạnh AB,AC lần lượt tại M và N.
b)Cho AM =6cm,MB=2cm,AC=24cm. Tính An,NC
c)Cho AN/AC=2/3 và AM=3cm. Tính MB
d)kẻ NP//AB (P thuộc BC. Chứng minh CP/CB+AM/AB=1