tìm một số tự nhiên nhỏ nhất sao cho số đó chia 29 dư 5 ; chia 31 dư 29
Tìm một số tự nhiên nhỏ nhất sao cho số đó chia cho 29 thì dư 5 ; chia cho 31 thì dư 28
Tìm số tự nhiên lớn nhất có 3 chữ số sao cho số đó chia 19 dư 9 chia 17 dư 5
Tìm số tự nhiên nhỏ nhất sao cho số đó chia 31 dư 29 chi 29 dư 5
Giúp nha ( Tick cho người đầu tiên nạ)
Tìm số tự nhiên lớn nhất có 3 chữ số sao cho số đó chia 19 dư 9 chia 17 dư 5
Tìm số tự nhiên nhỏ nhất sao cho số đó chia 31 dư 29 chi 29 dư 5
Giúp nha ( k cho người đầu tiên nạ)
Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 29 dư 5 và chia 31 dư 28
Gọi ố cần tìm là a.
Ta có : a=29p+5; a=31q+28
Khi đó ta có: 29p+5 = 31q+28 ﴾*﴿
=> 29﴾p‐q﴿ = 2q+23
=> 28﴾p‐q﴿ + ﴾p‐q﴿ ‐ 1 = 2q +22
Vế phải chia hết cho 2 nên [﴾p‐q﴿‐1] cung chia hết cho 2 mà a là số tự nhiên nhỏ nhất nên [﴾p‐q﴿‐1] = 0
=> p = q+1 thay vào ﴾*﴿ ta được
q = 3 => p = 4.
=> a = 31*3+28 = 121
hay a = 4*29 + 5 = 121
Số cần tìm là 121
Nếu chia hết cho 29 thì chia cho 31 dư 28-5=23.
Hiệu của 31 và 29: 31 - 29 = 2
Thương của phép chia cho 31 là:
(29-23) : 2 = 3
(Hoặc. Gọi a là thương lúc này của phép chia cho 31.
2 x a + 23 = 29 => a = 3)
Số cần tìm là:
31 x 3 + 28 = 121
Đáp số: 121
tick mình nha
Tìm số tự nhiên nhỏ nhất sao cho số đó chia 29 dư 5; chia 31 dư 28
Chia cho 29 dư 5 nghĩa là:S=29r+5 (r thuộc N)
Tương tự S=31p+28 (p thuộc N)
Vì29r+5=31p+28=>29(r-p)=2p+23
ta thấy2p+23 là số lẻ=>29(r-p) cũng là số lẻ=>r-p>=1
Theo giả thieetsS nhỏ nhất=>p nhỏ nhất(A=31p+28)
2p=>29(r-p)-23 nhỏ nhất
=>r-p nhỏ nhất
Do đó r-p=1=>2p=29-23=6
=>p=3
Vậy số cần tìm là:A=31p+28=31.3+28=121
Tìm số tự nhiên nhỏ nhất sao cho số đó chia 31 dư 28, chia 29 dư 5.
Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 29 dư 5 và chia cho 31 dư 28 .
Nếu chia hết cho 29 thì chia cho 31 dư 28-5=23.
Hiệu của 31 và 29: 31 - 29 = 2
Thương của phép chia cho 31 là:
(29-23) : 2 = 3
(Hoặc. Gọi a là thương lúc này của phép chia cho 31.
2 x a + 23 = 29 => a = 3)
Số cần tìm là:
31 x 3 + 28 = 121
Đáp số: 121
Gọi s cần tìm là a.
Ta có : a=29p+5; a=31q+28
Khi đó ta có: 29p+5 = 31q+28 ﴾*﴿
=> 29﴾p‐q﴿ = 2q+23
=> 28﴾p‐q﴿ + ﴾p‐q﴿ ‐ 1 = 2q +22
Vế phải chia hết cho 2 nên [﴾p‐q﴿‐1] cung chia hết cho 2
mà a là số tự nhiên nhỏ nhất nên [﴾p‐q﴿‐1] = 0
=> p = q+1 thay vào ﴾*﴿
ta được q = 3
=> p = 4.
=> a = 31*3+28 = 121
hay a = 4*29 + 5 = 121
Số cần tìm là 121
Tìm một số tự nhiên nhỏ nhất, biết khi chia số đó cho 29 thì dư 5, chia cho 31 thì dư 29.
Giả sử số cần tìm là A đã bớt đi 5.
Khi đó A chia hết cho 29, còn A chia cho 31 dư: 29 - 5 = 24
=> A=31x k+24 (k là số tự nhiên)
Thử chọn: k=0,1,2,3,...ta thấy: khi k=17 thì A=551 chia hết cho 29
Vậy số cần tìm là: A = 551 + 5 = 556
ĐS: 556
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A=29p+5(p thuộc N)
Tương tự: A=31q+28(q thuộc N)
Nên: 29p+5=31q+28=>29(p-q)=2q+23
Ta thấy: 2q+23 là số lẻ=>29(p-q) cũng là số lẻ=>p-q=1
Theo giả thiết A nhỏ nhất=>q nhỏ nhất(A=31q+28)
=>2q=29(p-q)-23 nhỏ nhất
=>p-q nhỏ nhất
Do đó p-q=1=>2q=29-23=6
=>q=3
Vậy số cần tìm là A=31q+28=31.3+28=121
tìm một số tự nhiên nhỏ nhất biết số đó chia cho 29 thì dư 5 chia cho 31 thì dư 29
ai tick cho mk để lên hạng 40 đi ( mk sẽ trả lại)
Tìm một số tự nhiên nhỏ nhất biết nếu số đó chia cho 29 thì dư 5 , còn chia cho 31 thì dư 29.
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A=29p+5(p thuộc N)
Tương tự: A=31q+28(q thuộc N)
Nên: 29p+5=31q+28=>29(p-q)=2q+23
Ta thấy: 2q+23 là số lẻ=>29(p-q) cũng là số lẻ=>p-q=1
Theo giả thiết A nhỏ nhất=>q nhỏ nhất(A=31q+28)
=>2q=29(p-q)-23 nhỏ nhất
=>p-q nhỏ nhất
Do đó p-q=1=>2q=29-23=6
=>q=3
Vậy số cần tìm là A=31q+28=31.3+28=121