Cho A = \(\frac{1}{1.3.5}\) + \(\frac{1}{3.5.7}\) + ..... + \(\frac{1}{47.49.51}\). Chứng minh A < \(\frac{1}{12}\)
\(A:\)\(\frac{4}{9.11.13}+\frac{4}{11.13.15}+...+\frac{4}{59.61.63}\)
\(B:\) \(\frac{1}{1.3.5}+\frac{1}{3.5.7}+...+\frac{1}{47.49.51}\)
Đây là bài tính t nha !!!
Ai nhanh mik T>I>C>K
\(B=\frac{1}{1.3.5}+\frac{1}{3.5.7}+...+\frac{1}{47.49.51}\)
\(C=\frac{4}{9.11.13}+\frac{4}{11.13.15}+...+\frac{4}{59.61.63}\)
Ai nhanh mik tick nha !!!!!
cái này ko khó bạn áp dụng wuy luật là tính dc
B==1/4.(4/1.3.5+1/3.5.7+...+1/47.49.51)
B=1/1.3-1/3.5+1/3.5-1/5.7+....+1/47.49-1/49.50
B=1/4.(1/3.5-1/49.50)
câu B nhân lên 4 rồi tính
câu C để đó là tính dc
tính giá trị của các biểu thức
a) A= \(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)
b) B= \(\frac{17}{1.3.5}+\frac{17}{3.5.7}+...+\frac{17}{47.49.51}\)
a) \(A=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{98\cdot99\cdot100}\)
\(A=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\)
\(A=\frac{1}{2}-\frac{1}{99\cdot100}=\frac{1}{2}-\frac{1}{9900}=\frac{4949}{9900}\)
b) \(B=\frac{17}{1\cdot3\cdot5}+\frac{17}{3\cdot5\cdot7}+\frac{17}{5\cdot7\cdot9}+...+\frac{17}{47\cdot49\cdot51}\)
\(B=\frac{17}{4}\left(\frac{4}{1\cdot3\cdot5}+\frac{4}{3\cdot5\cdot7}+\frac{4}{5\cdot7\cdot9}+...+\frac{4}{47\cdot49\cdot51}\right)\)
\(B=\frac{17}{4}\left(\frac{1}{1\cdot3}-\frac{1}{3\cdot5}+\frac{1}{3\cdot5}-\frac{1}{5\cdot7}+...+\frac{1}{47\cdot49}-\frac{1}{49\cdot51}\right)\)
\(B=\frac{17}{4}\left(\frac{1}{3}-\frac{1}{2499}\right)=\frac{17}{4}\cdot\frac{832}{2499}=\frac{208}{147}\)
Chứng minh rằng A = \(\frac{36}{1.3.5}+\frac{36}{3.5.7}+...+\frac{36}{25.27.29}
\(A=9.\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+...+\frac{4}{25.27.29}\right)\)
\(A=9.\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)
\(A=9.\left(\frac{1}{3}-\frac{1}{783}\right)\)
\(A=9.\frac{260}{87}=\frac{260}{87}
Tính :
A = \(\frac{17}{1.3.5}\) + \(\frac{17}{3.5.7}\) + \(\frac{17}{5.7.9}\) + ... + \(\frac{17}{47.49.51}\)
Ủng hộ 2 tick cho !!!
\(=\frac{1}{4}.\left(\frac{17.4}{1.3.5}+\frac{17.4}{3.5.7}+\frac{17.4}{5.7.9}+...+\frac{17.4}{47.49.51}\right)\)
\(=\frac{17}{4}\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{47.49}-\frac{1}{49.51}\right)\)
\(=\frac{17}{4}\left(\frac{1}{3}-\frac{1}{2499}\right)=\frac{17}{4}.\frac{832}{2499}=\frac{208}{147}\)
Chứng minh rằng :
a) A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}<\frac{1}{4}\)
b) B=\(\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+...+\frac{36}{25.27.29}<3\)
$\frac{4}{n\left(n+2\right)\left(n+4\right)}=\frac{n+4-n}{n\left(n+2\right)\left(n+4\right)}=\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+2\right)\left(n+4\right)}$4n(n+2)(n+4) =n+4−nn(n+2)(n+4) =1n(n+2) −1(n+2)(n+4) $\frac{B}{9}=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{25.27}-\frac{1}{27.29}=\frac{1}{3}-\frac{1}{27.29}<\frac{1}{3}$B9 =11.3 −13.5 +13.5 −15.7 +...+125.27 −127.29 =13 −127.29 <13 $\Rightarrow B<3$
Tính tổng : \(A=\frac{1}{1.3.5}+\frac{1}{3.5.7}+\frac{1}{5.7.9}+...+\frac{1}{1997.1999.2001}\)
Tính tổng \(A=\frac{1}{1.3.5}+\frac{1}{3.5.7}+\frac{1}{5.7.9}+...+\frac{1}{1997.1999.2001}\)
\(A=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{1997.1999}-\frac{1}{1999.2001}\)
\(=\frac{1}{1.3}-\frac{1}{1999.2001}\)
Bạn tính kết quả nhé
Tính nhanh;
\(A=\frac{1}{1.3.5}+\frac{1}{3.5.7}+...+\frac{1}{25.27.29}\)
\(A=\frac{1}{1.3.5}+\frac{1}{3.5.7}+...+\frac{1}{25.27.29}\)
\(\Rightarrow4A=\frac{4}{1.3.5}+\frac{4}{3.5.7}+...+\frac{4}{25.27.29}\)
\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{25.27}-\frac{1}{27.29}\)
\(=\frac{1}{3}-\frac{1}{783}=\frac{261}{783}-\frac{1}{783}=\frac{260}{783}\)
A = \(\frac{1}{1.3.5}+\frac{1}{3.5.7}+....+\frac{1}{25.27.29}\)
A = \(\frac{1}{4}.\left(\frac{5-1}{1.3.5}+\frac{7-3}{3.5.7}+...+\frac{29-25}{25.27.29}\right)\)
A = \(\frac{1}{4}.\left(\frac{5}{1.3.5}-\frac{1}{1.3.5}+\frac{7}{3.5.7}-\frac{3}{3.5.7}+...+\frac{29}{25.27.29}-\frac{25}{25.27.29}\right)\)
A = \(\frac{1}{4}.\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)
A = \(\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{27.29}\right)\)
A = \(\frac{1}{4}.\frac{206}{783}\)
A = \(\frac{65}{783}\)