Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hà Linh
Xem chi tiết
Trần Anh Tuấn
26 tháng 2 2016 lúc 21:13

nhan 2 ve voi a^2+b^2+c^2 dc toan binh phuong ,lon hon 0 nen x=y=z=0

thánh yasuo lmht
15 tháng 7 2017 lúc 21:08

CÁCH 1: Theo bất đẳng thức Bunhiacopski ta có:

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)

Dấu bằng xảy ra khi và chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

CÁCH 2: Nhân tung tóe cả 2 vế ra(đây cũng là cách CM bất đẳng thức bunhia cho bộ 3 số)

Lê Nga
Xem chi tiết
BiBo MoMo
Xem chi tiết
zZz Cool Kid_new zZz
20 tháng 8 2019 lúc 13:21

Phá ngoặc hết ra rồi phân tích thành tổng 3 bình phương.

Câu hỏi của nguyễn ngọc minh - Toán lớp 8 - Học toán với OnlineMath

lộc Nguyễn
Xem chi tiết
lộc Nguyễn
Xem chi tiết
Nguyễn Bảo Gia Huy
Xem chi tiết
Nguyễn Bảo Gia Huy
24 tháng 10 2019 lúc 21:04

Từ giả thiết 
x^2 - yz = a 
y^2 - zx = b 
z^2 - xy = c 
ta suy ra 
x^2 + y^2 + z^2 - xy - yz - zx = a + b + c # 0 (vì x,y,z không đồng thời bằng nhau); 
và 
x^3 - xyz = ax 
y^3 - xyz = by 
z^3 - xyz = cz. 
Cộng các đẳng thức theo vế, ta được 
x^3 + y^3 + z^3 - 3xyz = ax + by + cz. 
Sử dụng hằng đẳng thức x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) và x^2 + y^2 + z^2 - xy - yz - zx = a + b + c thì đẳng thức trên được viết lại 
(x + y + z)(a + b + c) = ax + by + cz. 
Suy ra ax + by + cz chia hết cho a + b + c. 

Khách vãng lai đã xóa
Nguyễn Ngọc Ánh
24 tháng 10 2019 lúc 21:12

bài này dùng chia hết thôi 

Khách vãng lai đã xóa
nguyen ngoc bich hang
Xem chi tiết
thuhang doan
Xem chi tiết
TFboys_Lê Phương Thảo
23 tháng 8 2016 lúc 20:50

Ta có: x/a = y/b =z/c =xa/a^2 =yb/b^2 =zc/c^2 = (ax+by+cz)/(a^2+b^2+c^2)  

=>x/a = (ax+by+cz)/(a^2+b^2+c^2) (1)  

Mặt khác ta có:

x/a=y/b=z/c <=> x^2/a^2 =y^2/b^2 =z^2/c^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)  

=>x^2/a^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2) (2)  

Từ (1) và (2) ta

=> (ax+by+cz)^2/(a^2+b^2+c^2)^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)  

=> (x^2+y^2+z^2).(a^2+b^2+c^2)=(ax+by+cz)^2

=> đpcm

Mai Thanh Hoàng
Xem chi tiết
Đen đủi mất cái nik
19 tháng 8 2017 lúc 15:19

Ta có

x2-yz=a

y2-zx=b

z2-xy=c

=>x3-xyz=ax

    y3-xyz=by

    z3-xyz=cz

=> x3+y3+z3-3xyz=ax+by+cz

Lại có

x3+y3+z3-3xyz

=(x+y)3-3x2y-3xy2+z3-3xyz

=[(x+y)3+z3]-3xy(x+y+z)

Áp dụng hằng đẳng thức x3+y3=(x+y)(x2-xy+y2) ta được:

=(x+y+z)[(x+y)2-z(x+y)+z2]-3xy(x+y+z)

=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)

=(x+y+z)(x2+y2+z2-xy-yz-zx)

( Hình như phải Chứng minh ax+by+cz chia hết cho x+y+z chứ nhỉ, nếu ko phải thì cho mik srr nhé, nếu đúng như mình nói thì bạn làm như trên nha)

Đen đủi mất cái nik
19 tháng 8 2017 lúc 15:27

ak mình nhầm tẹo srr nha, đến chỗ

(x+y+z)(x2+y2+z2-xy-yz-zx)

Vì x2-yz=a, y2-zx=b, z2- xy=c

=>x2+y2+z2-xy-yz-zx=a+b+c

=>ax+by+cz=(x+y+z)(a+b+c)

=> DPCM

Đen đủi mất cái nik
19 tháng 8 2017 lúc 15:28

srr nhiều