So sánh P= \(\frac{\sqrt{x}-4}{\sqrt{x}}.\frac{x+\sqrt{x}+1}{\sqrt{x}-4}\)với 2.
giúp mk với!!!
\(T=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\left(x>0\right)\)
a) Rút gọn M
b) Tìm x để \(T=\frac{9}{2}\)
c) So sánh T với 4
ai giúp mk ikk
\(a,\)\(T=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{\sqrt{x}^3-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\)\(\frac{\sqrt{x}^3+1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)\(-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+1}{\sqrt{x}}\)
\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
a) Rút gọn P
b) Tìm x để P=9/2 ( ai giúp tớ câu này nhé! )
c) So sánh P với 4
P= \(\frac{x\sqrt{x}-1}{x-\sqrt{x}}+\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
\(A=\frac{\sqrt{x}-1}{\sqrt{x}-2}+\frac{\sqrt{x}-4}{\sqrt{x-3}}-\frac{x-3\sqrt{x}+1}{x-5\sqrt{x}+6}\)
So Sánh A với 1
rút gọn
\(\frac{2\left(x+4\right)}{x-3\sqrt{x}-4}+\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{8}{\sqrt{x}-4}\)
mk cần gấp nha bạn
giúp mk với
\(\frac{2.\left(x+4\right)}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}+\frac{\sqrt{x}.\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}-\frac{8.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{2x+8+x-4\sqrt{x}-8\sqrt{x}-8}{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}\)
=\(\frac{3x-12\sqrt{x}}{mc}\)
=\(\frac{3\sqrt{x}.\left(\sqrt{x}-4\right)}{\left(\sqrt{x-4}\right)\left(\sqrt{x}+1\right)}=\frac{3\sqrt{x}}{\sqrt{x}+1}\)
k tk mk cung lam cho
Cho A =\(\left(\frac{x-\sqrt{x}+7}{x-4}+\frac{1}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{x-4}\right)\)với x > 0 , x \(\ne\)4
a, Rút gọn A
b, So sánh A với \(\frac{1}{A}\)
1. Cho E= \(\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x+1\right)}}}{\sqrt{x^2-4\left(x+1\right)}}\) \(\left(1-\frac{1}{x-1}\right)\)
RG E.
2. Cho E= \(\frac{1+\sqrt{1-x}}{1-x+\sqrt{1-x}}+\frac{1-\sqrt{1+x}}{1+x-\sqrt{1+x}}+\frac{1}{\sqrt{1+x}}\)
a) RGBT
b) So sánh E với \(\frac{\sqrt{2}}{2}\)
M=\(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right):\left(\frac{1}{\sqrt{x}+1}-\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{2}{x-1}\right)\)
a,CM: M=\(\frac{4\sqrt{x}}{x+2\sqrt{x}+1}\)
b,Tìm x để M=\(\frac{8}{9}\)
c,Tính M tại x=4
d,So sánh M với 1
(huhu giúp mk với...)
\(Q=\frac{x+\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
a. Rút gọn Q
b. So sánh Q với \(\frac{1}{4}\)
Tìm x để A < 2 với :
A = \(\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{7\sqrt{x}+10}{x\sqrt{x}-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
Mấy bạn giúp mk nha......cảm ơn m bạn ^^
\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{7\sqrt{x}+10}{x\sqrt{x}-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{7\sqrt{x}+10}{\sqrt{x}^3-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
\(=\left(\frac{\sqrt{x}\left(x+2\sqrt{x}+4\right)}{\sqrt{x}^3-8}-\frac{\left(x-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}^3-8}-\frac{7\sqrt{x}+10}{\sqrt{x}^3-8}\right)\)\(:\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
\(=\frac{\sqrt{x}^3+2x+4\sqrt{x}-\sqrt{x}^3+2x+3\sqrt{x}-6-7\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}.\frac{\left(x+2\sqrt{x}+4\right)}{\sqrt{x}+7}\)
\(=\)\(\frac{\left(4x-16\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}=\frac{4\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)
Sai đề không ?
A= \(\left(\frac{\sqrt{x}\left(x+2\sqrt{x}+4\right)-\left(x-3\right)\left(\sqrt{x}-2\right)-7\sqrt{x}+10}{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}\right)\) . \(\frac{x+2\sqrt{x}+4}{\sqrt{x}+7}\)
= \(\frac{x\sqrt{x}+2x+4\sqrt{x}-x\sqrt{x}+3\sqrt{x}-6+2x-7\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)
= \(\frac{4x-16}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)
=\(\frac{4\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)}\)
= \(\frac{4\left(\sqrt{x}+2\right)}{\sqrt{x}+7}\)
= \(\frac{4\sqrt{x}+8}{\sqrt{x}+7}\)
#mã mã#
Cám ơn bạn mã mã , để mình làm nốt nhé :
\(A=\frac{4\sqrt{x}+8}{\sqrt{x}+7}\)
Để \(A>2\Rightarrow\frac{4\sqrt{x}+8}{\sqrt{x}+7}>2\)
\(\Rightarrow\frac{4\sqrt{x}+8}{\sqrt{x}+7}-2>0\)
\(\Rightarrow\frac{4\sqrt{x}+8-2\sqrt{x}-14}{\sqrt{x}+7}>0\)
\(\Rightarrow\frac{2\sqrt{x}-6}{\sqrt{x}+7}>0\)
Vì \(\sqrt{x}>0\Rightarrow\sqrt{x}+7>0\)\(\Rightarrow A>0\Leftrightarrow2\sqrt{x}-6>0\)
\(\Rightarrow2\left(\sqrt{x}-3\right)>0\Rightarrow\sqrt{x}-3>0\)
\(\Leftrightarrow\sqrt{x}>3\Rightarrow\sqrt{x}>\sqrt{9}\Rightarrow x>9\)
Vậy để \(A>2\Leftrightarrow x>9\)