Cho các số tự nhiên a và b thỏa mãn Q=(18a+13b)*(4a+6b)là bội số của 77. CMR tồn tại một ước số khác 1 của số Q là bình phương đúng của một số tự nhiên nào đó
Cho các số tự nhiên a và b thỏa mãn Q=(18a+13b)*(4a+6b)là bội số của 77. CMR tồn tại một ước số khác 1 của số Q là bình phương đúng của một số tự nhiên nào đó.
GIÚP MIK NHA MIK ĐG CẦN GẤP..
Tìm số nguyên dương nhỏ nhất thỏa mãn các tính chất sau: 1/2 của nó là bình phương của một số tự nhiên nào đó, 1/3 của nó là lập phương của một số tự nhiên nào đó
Tìm số nguyên dương nhỏ nhất thỏa mãn các tính chất sau: 1/2 của nó là bình phương của một số tự nhiên nào đó, 1/3 của nó là lập phương của một số tự nhiên nào đó.
Dùng nguyên lí Dirichle để giải các bài tập sau:
1) Viết 20 số tự nhiên vào 20 tấm bìa. CMR: Ta có thể chọn 1 hay nhiều tấm bìa để tổng các số đó chia hết cho 20
2) CMR: tồn tại 1 số tự nhiên chia hết cho 17
a) Gồm toàn chữ số 1 và chữ số 0
b) Gồm toàn chữ số 1
3) CMR: Tồn tại số tự nhiên k để 3k có 3 chữ số tận cùng là 001
4) CHo 51 số tự nhiên khác 0 và không vượt quá 100. CMR:
a) Mỗi số đều viết được 2k.b(k;b thuộc N, b lẻ, k có thể = 0). Xác định khoảng giá trị của k và b
b) Tồn tại 2 số mà số này là bội của số kia
Đầu tiên, chúng ta xét xem (16a+17b)(17a+16b) chia hết cho 11 hay không. Ta biểu diễn số m = (16a+17b)(17a+16b) dưới dạng m = 272a^2 + 528ab + 272b^2.
Vì 11 là một số nguyên tố, nên theo tính chất của phép nhân, để m là một bội số của 11, thì mỗi thành phần của m cũng phải là một bội số của 11.
Ta thấy rằng 272a^2 và 272b^2 đều chia hết cho 11, vì 272 chia hết cho 11. Vì vậy, ta chỉ cần chứng minh rằng 528ab chia hết cho 11 để kết luận m là một bội số của 11.
Để chứng minh điều này, ta sử dụng tính chất căn bậc hai modulo 11. Ta biết rằng căn bậc hai của 11 là 5 hoặc -5 (vì 5^2 = 25 ≡ 3 (mod 11)). Vì vậy, ta có:
(16a+17b)(17a+16b) ≡ (5a+6b)(6a+5b) (mod 11).
Mở ngoặc, ta được:
(5a+6b)(6a+5b) ≡ 30ab + 30ab ≡ 60ab ≡ 6ab (mod 11).
Vì 6 không chia hết cho 11, nên 6ab cũng không chia hết cho 11. Do đó, ta kết luận rằng 528ab không chia hết cho 11 và m là một bội số của 11.
Tiếp theo, chúng ta cần chứng minh rằng m là một bội số của 121. Để làm điều này, ta cần chứng minh rằng m chia hết cho 121.
Một cách để chứng minh rằng m chia hết cho 121 là tìm một số tự nhiên k sao cho m = 121k. Để làm điều này, chúng ta cần tìm một số tự nhiên k sao cho (16a+17b)(17a+16b) = 121k.
Ta biểu diễn số m = (16a+17b)(17a+16b) dưới dạng m = 272a^2 + 528ab + 272b^2.
Chúng ta đã chứng minh rằng m là một bội số của 11, vậy m = 11m' với m' là một số tự nhiên.
Thay thế m vào công thức m = 272a^2 + 528ab + 272b^2, ta có:
11m' = 272a^2 + 528ab + 272b^2.
Chia cả hai vế của phương trình cho 11, ta có:
m' = 24a^2 + 48ab + 24b^2.
Như vậy, m' là một số tự nhiên. Điều này cho thấy rằng m chia hết cho 121 và m là một bội số của 121.
Để tìm tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5, chúng ta cần tìm tổng của tất cả các số tự nhiên từ 10 đến 99 không chia hết cho 3 và 5.Để tính tổng này, chúng ta có thể sử dụng công thức tổng của một dãy số từ một số đến một số khác. Công thức này là:
Tổng = (Số lượng số trong dãy) * (Tổng của số đầu tiên và số cuối cùng) / 2,
trong đó, Số lượng số trong dãy = (Số cuối cùng - Số đầu tiên) + 1.
Áp dụng công thức này vào bài toán, ta có:
Số đầu tiên = 10, Số cuối cùng = 99, Số lượng số trong dãy = (99 - 10) + 1 = 90.
Tổng = 90 * (10 + 99) / 2 = 90 * 109 / 2 = 90 * 54,5 = 4.905.
Vậy tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5 là 4.905.
Bài 4. 1) Cho hai số tự nhiên a và b thỏa mãn số: m=(16a+17b)(17a+16b) là một bội số của 11. Chứng minh rằng số m cũng là một bội số của 121 2) Tìm tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5
Bài toán 1: Để chứng minh số m cũng là một bội số của 121, ta sẽ sử dụng một số tính chất của phép chia.
Ta có: m = (16a + 17b)(17a + 16b) = (17a + 16b)^2 - (ab)^2
Vì m là một bội số của 11, nên ta có thể viết m dưới dạng m = 11k, với k là một số tự nhiên.
Từ đó, ta có (17a + 16b)^2 - (ab)^2 = 11k.
Áp dụng công thức (a + b)^2 - (ab)^2 = (a - b)^2, ta có (17a + 16b + ab)(17a + 16b - ab) = 11k.
Ta có thể chia hai trường hợp để xét:
Trường hợp 1: (17a + 16b + ab) chia hết cho 11. Trường hợp 2: (17a + 16b - ab) chia hết cho 11.
Trong cả hai trường hợp trên, ta đều có một số tự nhiên tương ứng với mỗi trường hợp.
Do đó, nếu m là một bội số của 11, thì m cũng là một bội số của 121.
Bài toán 2: Để tìm tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5, ta cần xác định tập hợp các số thỏa mãn điều kiện trên và tính tổng của chúng.
Các số tự nhiên hai chữ số không chia hết cho 3 và 5 có dạng AB, trong đó A và B lần lượt là các chữ số từ 1 đến 9.
Ta thấy rằng có 3 chữ số (3, 6, 9) chia hết cho 3 và 2 chữ số (5, 0) chia hết cho 5. Vì vậy, số các chữ số không chia hết cho 3 và 5 là 9 - 3 - 2 = 4.
Do đó, mỗi chữ số A có 4 cách chọn và mỗi chữ số B cũng có 4 cách chọn.
Tổng tất cả các số có hai chữ số không chia hết cho 3 và 5 là 4 x (1 + 2 + 3 + ... + 9) x 4 = 4 x 45 x 4 = 720.
Vậy tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5 là 720.
Số tự nhiên được viết bởi 1 chữ số 1, 2 chữ số 2,ba chữ số 3,...,chín chữ số 9 , có thể là lập phương của 1 số tự nhiên không?
CMR : tồn tại một số là bội của 19 có tổng các chữ số bằng 19.
CMR: 2 số lẻ liên tiếp nguyên tố cùng nhau
câu cmr tồn tại 1 số là bội của 19 có tổng các chữ số là 19:
tồn tại số là bội của 19 có tổng các chữ số là 19. VD: 874
Chọn phát biểu sai.
A. Tập hợp các ước của aa là Ư(a)Ư(a), tập hợp các bội của aa là B(a)B(a).
B. Nếu số tự nhiên aa chia hết cho số tự nhiên bb thì ta nói aa là ước của bb, còn bb là bội của aa.
C. Ta có thể tìm các bội của một số khác 00 bằng cách nhân số đó lần lượt với 0;1;2;3;...0;1;2;3;....
D. Ta có thể tìm các ước của a (a>1)a (a>1) bằng cách lần lượt chia aa cho các số tự nhiên từ 11 đến aa để xem aa chia hết cho những số nào, khi đó các số ấy chính là ước của aa.
Cho A là một số nguyên dương. Biết rằng trong ba khẳng định sau đây P, Q, R chỉ có duy nhất một khẳng định sai.
P = “A + 51 là bình phương của một số tự nhiên”
Q = “A có chữ số tận cùng là 1”
R = “A – 38 là bình phương của một số tự nhiên”
Hãy cho biết khẳng định nào là đúng, khẳng định nào là sai? Giải thích.
Giả sử khẳng định Q là đúng A + 51 có tận cùng là 2
P là khẳng định sai (vì không thể là bình phương số tự nhiên)
Khi đó A – 38 có tận cùng là 3 R là khẳng định sai (vì không là bình phương số tự nhiên)
Vậy Q là khẳng định sai và P, R là hai khẳng định đúng.