Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thái Thị Hà Linh
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
4 tháng 6 2018 lúc 21:32

Câu hỏi của Davids Villa - Toán lớp 6 - Học toán với OnlineMath

Xem bài 1 tai jđây nhé ! mk ngại viết 

Trịnh Sảng và Dương Dươn...
4 tháng 6 2018 lúc 22:10

Bài 1:

Gọi p là số nguyên tố cần tìm và \(p=a+b=c-d\)với \(a,b,c,d\)là các số nguyên tố ,\(c>d\)

Vì \(p=a+b>2\)nên p là số lẻ 

\(\Rightarrow a+b\)và \(c-d\)là các số lẻ 

Vì \(a+b\)là số lẻ nên một trong hai số \(a,b\)là số chẵn ,giả sử b chẵn .Vì b là số nguyên tố nên \(b=2\)

Vì \(c-d\)là số lẻ nên một trong hai số \(c,d\)là số chẵn .Vì \(c,d\)là các số nguyên tố \(c>d\)nên d là số chẵn \(\Rightarrow d=2\)

Do vậy :\(p=a+2=c-2\Rightarrow c=a+4\)

Ta cần tìm số nguyên tố a  để \(p=a+2\)và \(c=a+4\)cũng là số nguyên tố 

Vậy số nguyên tố cần tìm là 5: với \(5=3+2=7-2\)

Bài 2 :

Từ \(p=\left(n-2\right)\left(n^2+n-5\right)\)suy ra \(n-2\) và \(n^2+n-5\)là ước của p

Vì p là số nguyên tố nên hoặc \(n-2=1\)hoặc \(n^2+n-5=1\)

Nếu \(n-2=1\)thì \(n=3\)

Khi đó \(p=1.\left(3^2+3-5\right)=7\)là số nguyên tố (thảo mãn) 

Nếu \(n^2+n-5=1\Leftrightarrow n^2+n=6\Leftrightarrow n\left(n+1\right)\)\(=2.3\Rightarrow n=2\)

Khi đó \(p=\left(2-2\right).1=0\)không là số nguyên tố

Vậy \(n=3\)

Chúc bạn học tốt ( -_- )

Vacija
5 tháng 6 2018 lúc 5:55

bn CTV kia co bit làm đ éo đâu :))

EnderCraft Gaming
Xem chi tiết
Nguyễn Văn Vũ
Xem chi tiết
ngonhuminh
2 tháng 11 2016 lúc 21:43

\(p=\left(n-1\right)^2\left[\left(n-1\right)^2+1\right]+1\)

\(\left(n-1\right)^4+2.\left(n-1\right)^2+1-\left(n-1\right)^2\)

\(\left[\left(n-1\right)^2+1\right]^2-\left(n-1\right)^2\)

\(\left[\left(n-1\right)^2+1-\left(n-1\right)\right]\left[\left(n-1\right)^2+1+\left(n-1\right)\right]\)

\(\left[n^2-3n+3\right]\left[n^2-n+1\right]\)

can

\(\orbr{\begin{cases}n^2-3n+3=1\Rightarrow n=\orbr{\begin{cases}n=2\\n=1\end{cases}}\\n^2-n+1=1\Rightarrow n=\orbr{\begin{cases}n=0\\n=1\end{cases}}\end{cases}}\)\(\orbr{\begin{cases}n^2-3n+3=1\\n^2-n+1=1\end{cases}}\)

n=(0,1,2)

du

n=2

ds: n=2

Chi Nguyễn Thị Diệp
Xem chi tiết
liên hoàng
Xem chi tiết
Võ Thị Tuyết Nhung
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Kira
Xem chi tiết
Phạm Ngọc Thạch
Xem chi tiết
Đinh Tuấn Việt
6 tháng 6 2015 lúc 14:34

- Với n = 0 thì n(n+1)(n + 2) = 0 nên \(\frac{0}{2}+1=1\), ko phải là số nguyên tố

- Với n = 1 thì n + 1 = 2 ; n + 2 = 3. Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{2}+1=\frac{1.2.3}{2}+1=4\), không phải số nguyên tố

- Với n = 2 thì n + 1 = 3 ; n + 2 = 4.Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1=\frac{2.3.4}{6}+1=5\), là số nguyên tố 

- Với n = 3 thì n + 1 = 4 ; n + 2 = 5.Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1=\frac{3.4.5}{6}+1=11\), là số nguyên tố

- Với n \(\ge\) 4 thì n + 1 \(\ge\) 5 ; n + 2 \(\ge\) 6. Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1\ge\frac{4.5.6}{6}+1=21\)

, luôn là hợp số.

                                Vậy chỉ có kết quả là 5 và 11 là thỏa mãn.

Phạm Ngọc Thạch
6 tháng 6 2015 lúc 15:01

thì bạn phải chỉ rõ, lí luận chứ lỡ đâu cũng trong muôn vàn số vẫn có trường hợp đặc biệt