Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiểu thư họ Đoàn
Xem chi tiết
Đen đủi mất cái nik
19 tháng 8 2017 lúc 8:41

Đặt phân thức trên là D

=> D=(1+1+1+1+...+1+2013/2+2012/3+...+2/2013+1/2014)/(1/2+1/3+1/4+...+1/2014)

=> D=(1+2013/2+1+2012/3+1+2011/4+...+1+2/2013+1+1/2014+1)/(1/2+1/3+1/4+1/5+...+1/2014)

=> D=(2015/2+2015/3+2015/4+...+2015/2013+2015/2014+1)/(1/2+1/3+1/4+...+1/2014)

=> D=[2015*(1/2+1/3+1/4+1/5+....+1/2014)]/(1/2+1/3+1/4+1/5+...+1/2014)

=> D=2015

ẩn danh
13 tháng 6 2020 lúc 21:06

UwU

ư uwsuuuuuuuuuuuu kimochiiiiiiiiiiiiiiiiiiii

đùa thôi đáp án: 2015 nha bn

ư ư wsuuuuuuuuuuuuuuuuuuuuuuuuuu kimmmmmooooochiiiiiiiiiii

À quên nhớ FOLOW CHO TUI NHA!

Khách vãng lai đã xóa
Tạ Hữu Năng
13 tháng 6 2020 lúc 21:08

d= 2015

Khách vãng lai đã xóa
Mai Huyền
Xem chi tiết
zZz Cool Kid_new zZz
23 tháng 6 2020 lúc 21:03

Đặt \(S=\frac{1}{1+1^2+1^4}+\frac{2}{1+2^2+2^4}+....+\frac{2013}{1+2013^2+2013^4}\)

Xét:

\(\frac{k}{k+k^2+k^4}=\frac{1}{2}\cdot\frac{k^2+k+1-k^2+k-1}{k^4+k^2+1}\)

\(=\frac{1}{2}\cdot\frac{k\left(k+1\right)+1-k\left(k-1\right)-1}{\left(k^2+1\right)^2-k^2}\)

\(=\frac{1}{2}\left[\frac{1}{k\left(k-1\right)+1}-\frac{1}{k\left(k+1\right)+1}\right]\)

Áp dụng :

\(S=\frac{1}{2}\left[\frac{1}{1\cdot0+1}-\frac{1}{1\cdot2+1}+\frac{1}{2\cdot1+1}-\frac{1}{2\cdot3+1}+.....+\frac{1}{2013\cdot2012+1}-\frac{1}{2013\cdot2014+1}\right]\)

\(=\frac{2027091}{4054183}\)

Khách vãng lai đã xóa
Lê Thu Hà
Xem chi tiết
_Detective_
4 tháng 5 2016 lúc 17:53

=> B=2013. (1+\(\frac{1}{1+2}\) +\(\frac{1}{1+2+3}\) +...+ \(\frac{1}{1+2+3+...+2012}\))

=>B= 2013.(\(\frac{2}{2}\) + \(\frac{2}{2.3}\) +\(\frac{2}{3.4}\) +...+\(\frac{2}{2012.2013}\))

=>B= 2013.2.(\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) +\(\frac{1}{3.4}\) +...+\(\frac{1}{2012.2013}\))

=>B=4026. (1-\(\frac{1}{2}\) +\(\frac{1}{2}\) -\(\frac{1}{3}\) + ...+\(\frac{1}{2012}\) - \(\frac{1}{2013}\))

=>B=4026.(1-\(\frac{1}{2013}\)

=>B=4026.\(\frac{2012}{2013}\) => B=2.2012=4024 Vậy B=4024

Đặng Hoàng Bảo
Xem chi tiết
Cô Hoàng Huyền
8 tháng 5 2017 lúc 15:16

Ta có : 1 + 2 + 3 + ... + n = \(\frac{\left(n+1\right)n}{2}\)

Vậy nên : \(A=2013+\frac{2013}{\frac{3.2}{2}}+\frac{2013}{\frac{4.3}{2}}+...+\frac{2013}{\frac{2013.2012}{2}}\)

\(A=2013+\frac{4026}{2.3}+\frac{4016}{3.4}+...+\frac{4026}{2012.2013}\)

\(A=4026\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2012.2013}\right)\)

\(A=4026\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)

\(A=4026\left(1-\frac{1}{2013}\right)=4026.\frac{2012}{2013}=4024.\)

Nguyễn Tí Tèo
Xem chi tiết
Cold Guy
19 tháng 3 2018 lúc 5:16

óc chó      c hó

Nguyễn Đức Hiền
19 tháng 3 2018 lúc 5:19

B=2013.(1+

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{2013}{1+2+3+...+2012}\)

B=2013(\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2012.2013}\)

B=2013.2(\(1\frac{1}{2013}=2013.2.\frac{2012}{2013}=4024\)

Nguyễn Tí Tèo
19 tháng 3 2018 lúc 18:55

Maỳ có bị óc chó không mà bảo câu trả lời của đại ca tao là sai

Thảo Kẹoo
Xem chi tiết
Hiếu Lê
26 tháng 3 2017 lúc 20:24

\(TA-CO':\)

\(A=\frac{4+\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}}{7+\frac{7}{2014}-\frac{7}{2015}+\frac{7}{2012}-\frac{7}{2013}}\)

\(A=\frac{4\left(\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2012}-\frac{1}{2013}\right)}{7\left(\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2012}-\frac{1}{2013}\right)}\)

\(A=\frac{4}{7}\)

\(B=\frac{1+2+...+2^{2013}}{2^{2015}-2}\)

ĐẶT \(C=1+2+...+2^{2013}\)

\(\Rightarrow2C=2+2^2+...+2^{2014}\)

\(\Rightarrow2C-C=\left(2+2^2+...+2^{2014}\right)-\left(1+2+...+2^{2013}\right)\)

\(\Rightarrow C=2^{2014}-2\)

\(\Rightarrow B=\frac{2^{2014}-1}{2^{2015}-2}\)

\(B=\frac{2^{2014}-1}{2\left(2^{2014}-1\right)}\)

\(B=\frac{1}{2}\)

\(\Rightarrow A-B=\frac{3}{7}-\frac{1}{2}=\frac{6}{14}-\frac{7}{14}\)

\(A-B=\frac{6-7}{14}=\frac{-1}{14}\)

VẬY, \(A-B=\frac{-1}{14}\)

pham phuc hau
Xem chi tiết
Nguyễn Huy Tú
10 tháng 11 2016 lúc 20:12

\(D=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+...+\frac{2013}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)

\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)+1}\)

\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)

\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}\)

\(=\frac{2013}{2014}\)

Nguyễn Minh Vũ
12 tháng 2 2017 lúc 14:16

2013/2014

Trương Thanh Nhân
12 tháng 2 2017 lúc 14:32

\(\frac{2013}{2014}\)

phamngoclinh
Xem chi tiết
Tiến Dũng Trương
13 tháng 8 2017 lúc 16:27

ở tử số ta làm thế này

\(TS=\left(1+\frac{1}{2014}\right)+\left(1+\frac{1}{2013}\right)+\left(1+\frac{1}{2012}\right)+...+\left(1+\frac{2013}{2}\right)\)

\(TS=2015\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}+...+\frac{1}{2}\right)\)

\(\frac{TS}{MS}=2015\)

Itsuka Hiro
Xem chi tiết