Chứng minh rằng tổng của 5 số lẻ liên tiếp không chia hết cho 10 và tìm số dư của phép tính đó
chứng minh rằng
Tổng của ba số lẻ liên tiếp không chia hết cho 6
Tổng của ba số chẵn liên tiếp chia hết cho 6
Tổng của năm số chẵn liên tiếp chia hết cho 10
Tổng của 5 số lẻ liên tiếp chia 10 dư 5
nhanh mình tick
3+5+7 = 15 không chia hết cho 6
4+6+8=18 chia hết cho 6
8+10+12=30 chia hết cho 10
13+15+17=45 chia 10 dư 5
k mình nha!!!!!!!!!!
Gọi 3 số lẻ liên tiếp không chia hết cho 6 là: 6k+1;6k+3;6k+5
Tông của 3 số lẻ liên tiếp ko chia hết cho 6 là: 6k+1+6k+3+6k+5
6k+1+6k+3+6k+5=6k.3+8
Vì 8 không chia hết cho 6 =>6k.3+8 ko chia hết cho 6
Vậy tổng ba số lẻ liên tiếp ko chia hết cho 6
.
Gọi 3 số chẵn chia hết cho 6 là:6k;6k+2;6k+4
Tổng của 3 số chẵn chia hết cho 6 là:6k+6k+2+6k+4
6k+6k+2+6k+4=6k.3+6
Vì 6 chia hết cho 6 => 6k.3+6 chia hết cho 6
Vậy tổng 3 số tự nhiên chẵn liên tiếp chia hết cho 6
.
Gọi 5 số chẵn liên tiếp chia hết cho 10 là: 10k;10k+2;10k+4;10k+6;10k+8
Tổng 5 chẵn liên tiếp chia hết cho 10 là:10k+10k+2+10k+4+10k+6+10k+8=10k.5+30
Vì 30 chia hết cho 10 => 10k.5+30 chia hết cho 10
Vậy tổng của năng số chẵn liên tiếp chia hết cho 10
.
Gọi 5 số lẻ liên tiếp không chia hết cho 10 là: 10k+1;10k+3;10k+5;10k+7;10k+9
Tổng của 5 số lẻ liên tiếp ko chai hết cho 10 là: 10k+1+10k+3+10k+5+10k+7+10k+9
10k+1+10k+3+10k+5+10k+7+10k+9=10k.5+25
Vì 25 : 10 ( dư 5) => 10k.5+25 : 10 (dư 5)
Vậy tổng của 5 số lẻ liên tiếp chia cho 10 (dư 5)
Chứng minh rằng:
a, tổng của ba số chẵn liên tiếp thì chia hết cho 6.
b, tổng của ba số lẻ liên tiếp không chia hết cho 6.
c, tổng của 5 số chẵn liên tiếp thì chia hết cho 10, còn tổng của 5 số lẻ liên tiếp thì chia 10 dư 5.
a) Gọi ba số chẵn liên tiếp là: a; a+2; a+4
Ta có: a+a+2+a+4=3a+6
Vì 6 chia hết cho 6=>3a+6 chia hết cho 6
=>tổng của ba số chắn liên tiếp chia hết cho 6
a.gọi 3 số tự nhiên liên tiếp lạ:
a;a+2;a+4(a thuộc n;a=2k)
có
a+a+2+a+4=3a+6=3.2k+6 chia hết cho 6
b.gọi 3 số lẻ liên tiếp là:
a+1,a+3;a+5(a thuộc n;a=2k)
có:a+5+a+1+a+3=3a+9=6k+9
=6k+9=6k+9 ko chi hết cho 6
c.gọi ......là:a,a+2,a+4;a+6;a+8(a thuộc n;a=2k)
a+a+2+a+4+a+6+a+8=5a+20=10k+20=10(k+2) chia hết cho 10=>đpcm
d.tương tự trên có
a+1+a+3+a+5+a+7+a+9=5a+25=10k+25=10k+20+5=10(k+2)+5 chia 10 dư 5=>đpcm
Chứng minh rằng:
Tổng của 6 số lẻ liên tiếp chia hết cho 12. Còn tổng của 6 số chẵn không chia hết cho 12 và tìm số dư trong phép chia cho 12
Gọi 6 số lẻ liên tiếp có dạng:2k+1;2k+3;2k+5;2k+7;2k+9;2k+11.
Tổng của chúng là:
2k+2k+2k+2k+2k+2k+1+3+5+7+9+11.
=12k+36
=12.(k+3) chia hết cho 12.
Với tổng 6 số chẵn chuyển thành 2k;2k+2;...; rồi làm tương tự.
Chúc em học tốt^^
1 phép chia có số chia là 26, số dư là 15, tổng của số bị chia, số chia, thương, số dư là 1352. Tìm số bị chia và thương
chứng minh rằng tổng của 5 số chẵn liên tiếp thì chia hết cho 10 còn tổng của 5 số lẻ liên tiếp chia cho 10 dư 5.
5 số chẵn liên tiếp: 2k,2k+2,2k+4,2k+6,2k+8
S=2k+(2k+2)+(2k+4)+(2k+6)+(2k+8)=10k+20
S chia hết cho 10
b) 5 số lẻ liên tiếp: 2k+1,2k+3,2k+5,2k+7,2k+9 có tổng là
S=(2k+1)+(2k+3)+(2k+5)+(2k+7)+(2k+9) = 10k+25 =10k+20+5
=> S:10 dư 5
Chứng minh rằng tổng của 5 số chẵn liên tiếp thì chia hết cho 10 , con tổng của 5 số lẻ liên tiếp chia cho 10 dư 5
Tổng 5 số chẵn liên tiếp chắc chắn chia hết cho 2 => chúng chia hết cho 2.5 => chia hết cho 10
Chứng minh rằng tổng của 5 số chẵn liên tiếp thì chia hết cho 10 còn tổng của 5 số lẻ liên tiếp chia cho 10 dư 5
a) 5 số chẵn liên tiếp: 2k,2k+2,2k+4,2k+6,2k+8
S=2k+(2k+2)+(2k+4)+(2k+6)+(2k+8)=10k+20
S chia hết cho 10
b) 5 số lẻ liên tiếp: 2k+1,2k+3,2k+5,2k+7,2k+9 có tổng là
S=(2k+1)+(2k+3)+(2k+5)+(2k+7)+(2k+9) = 10k+25 =10k+20+5
Do đó: S:10 dư 5
tổng của 5 số chãn liên tiếp sẽ có chữ số tận cùng là 0
nên chioa hết cho 10
tổng của 5 số lẻ liên tiếp có chữ số tận cùng là 5 nên chia 10 dư 5
5 số chẵn liên tiếp: 2k,2k+2,2k+4,2k+6,2k+8
S=2k+(2k+2)+(2k+4)+(2k+6)+(2k+8)=10k+20
S chia hết cho 10
b) 5 số lẻ liên tiếp: 2k+1,2k+3,2k+5,2k+7,2k+9 có tổng là
S=(2k+1)+(2k+3)+(2k+5)+(2k+7)+(2k+9) = 10k+25 =10k+20+5
=> S:10 dư 5
Chứng minh rằng tổng của 5 số chẵn liên tiếp thì chia hết cho 10 còn tổng của 5 số lẻ liên tiếp chia cho 10 dư 5.
Tổng của 5 số chẵn thì chia hết cho 2.
Gọi 5 số chẵn liên tiếp là a-4; a-2; a; a+2; a+4.
Tổng của chúng bằng : (a - 4) + ( a - 2) + a + (a + 2) + (a + 4 ) = 5a chia hết cho 5
=> tổng của năm số chẵn chia hết cho 10.
Tổng của năm số lẻ liên tiếp là số lẻ và tương tự ở trên chia hết cho 5 nên chia 10 dư 5
chúc bạn học tốt
Chứng minh rằng tổng của 5 số chẵn liên tiếp chia hết cho 10 còn tổng của 5 số tự nhiên lẻ liên tiếp chia 10 dư 5.
Chứng minh rằng tổng của 5 số chẵn liên tiếp thì chia hết cho 10,còn tổng của 5 số lẻ liên tiếp thì không chia hết cho 10.
Gọi 5 số chẵn liên tiếp là a;a+2;a+4;a+6;a+8
Tổng 5 số đó là:
a+(a+2)+(a+4)+(a+6)+(a+8)
=a+a+2+a+4+a+6+a+8
=5a+(2+4+6+8)
=5a+20
Ta có:
a là số chẵn nên a chia hết cho 2=>5a chia hết cho 5.2=10
Mà 20 chia hết cho 10
=> 5a+20 chia hết cho 10
=> Tổng của 5 số chẵn liên tiếp chia hêt cho 10
Gọi 5 số lẻ liên tiếp là b;b+2;b+4;b+6;b+8
Tổng 5 số đó là:
b+(b+2)+(b+4)+(b+6)+(b+8)
=b+b+2+b+4+b+6+b+8
=5b+(2+4+6+8)
=5b+20
b là số lẻ nên 5b không chia hết cho 2 hay không chia hết cho 2.5=10
20 chia hết cho 10
=>5b+20 không chia hết cho 10
=> Tổng của 5 số lẻ liên tiếp ko chia hết cho 10
=>dpcm