rút gọn biểu thức :
\(\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right)\frac{x-1}{2x+\sqrt{x}-1}\)
Rút gọn biểu thức:
\(\left(\frac{2x+1}{\sqrt{x^3-1}}-\frac{\sqrt{x}}{x+\sqrt{x}+1}\right).\left(\frac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)
;))) tớ nhớ dạng RGBT căn bậc 3 lớp 9 nhì :)))????
\(\left(\frac{2x+1}{\sqrt{x^3}-1}-\frac{\sqrt{x}}{x+\sqrt{x+1}}\right).\left(\frac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\frac{2x+1-\sqrt{x}\left(\sqrt{x-1}\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left[\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right]\)
\(=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x+1}\right)}.\left(1-2\sqrt{x}+x\right)\)
\(=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)^2\)
\(=\sqrt{x}-1\)
Rút gọn biểu thức
\(P=\left(\frac{1}{1-\sqrt{x}}-\frac{1}{\sqrt{x}}\right):\left(\frac{2x+\sqrt{x}-1}{\sqrt{x}-x\sqrt{x}}+\frac{2x\sqrt{x}+x-\sqrt{x}}{\sqrt{x}+x^2}\right)\)
\(P=\left(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\frac{2}{\sqrt{2}-\sqrt{x}}-\frac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)Rút gọn biểu thức P
RÚT GỌN BIỂU THỨC: \(P=\left(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\frac{2}{\sqrt{2}-\sqrt{x}}-\frac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}\right)\)
ĐKXĐ: \(x\ge1\); x khác 2; 3
Ta có:
\(\frac{1}{\sqrt{x}-\sqrt{x-1}}=\frac{\sqrt{x}+\sqrt{x-1}}{x-\left(x-1\right)}=\sqrt{x}+\sqrt{x-1}\)
\(\frac{x-3}{\sqrt{x-1}-\sqrt{2}}=\frac{\left(x-3\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{x-1-2}=\sqrt{x-1}+\sqrt{2}\)
=> \(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x-3}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x}+\sqrt{x-1}-\left(\sqrt{x-1}+\sqrt{2}\right)=\sqrt{x}-\sqrt{2}\)
\(\frac{2}{\sqrt{2}-\sqrt{x}}-\frac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}=\frac{2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}=\frac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\)
=> \(P=\left(\sqrt{x}-\sqrt{2}\right).\frac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}=\frac{2-\sqrt{x}}{\sqrt{x}}\)
\(y=\left(\frac{1}{1-\sqrt{x}}-\frac{1}{\sqrt{x}}\right):\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\).Rút gọn biểu thức
Rút gọn biểu thức \(P=\left(\frac{\sqrt{x}+1}{\sqrt{2x}+1}+\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x}+1}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
Rút gọn biểu thức: \(M=\left(\frac{1}{2}-\frac{1}{2x}\right)\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
ĐK:x>1
M=\(\frac{x-1}{2x}\) .\(\frac{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{x-1}\)
=\(\frac{x-1}{2x}\).\(\frac{x\sqrt{x}-x-x+\sqrt{x}-x\sqrt{x}-x-x-\sqrt{x}}{x-1}\)=\(\frac{x-1}{2x}\).\(\frac{-4x}{x-1}\)=-2
Vậy M=-2
Cho biểu thức
P=\(\frac{\sqrt{x}+1}{\sqrt{x}+3}+\frac{\sqrt{x}-2}{\sqrt{x}-1}-\frac{2x-10}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
Rút gọn P,tìm x để P>0
đk: \(x\ge0\)và \(x\ne1\)
\(\Leftrightarrow P=\frac{x-1+\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-1}\right)}-\frac{2x-10}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow P=\frac{x-1+x+\sqrt{x}-6-2x+10}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow P=\frac{\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\frac{1}{\sqrt{x}-1}\)
để P > 0
\(\Leftrightarrow1>\sqrt{x}-1\)
\(\Leftrightarrow-\sqrt{x}>-2\)
\(\Leftrightarrow\sqrt{x}< 2\)
\(\Leftrightarrow x< 4\)
có sai xót mong m.n bỏ qa cho ♥
rút gọn biểu thức : \(\frac{x^2-\sqrt{x}}{x+\sqrt{x}+x}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\cdot\left(x-1\right)}{\sqrt{x}-1}\)
Cho bt
M=\(\left(\frac{1}{1-\sqrt{x}}-\frac{1}{\sqrt{x}}\right):\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)
a) Rút gọn biểu thức M
b)Tính giá trị M với x = \(7-4\sqrt{3}\)