Cho S=3^0+3^2+3^4+3^6...........+3^2002
A.tính S
B.chứng minh:S chia hết cho 7
Chứng minh:S=1+32+34+....+32002 chia hết cho 7
Cho S=3^0+3^2+3^4+3^6+...+3^2002
Chứng minh S chia hết cho 7
cho tổng :S=3^0+3^2+3^4+3^6+...........................+3^2014.tính S và chứng minh S chia hết cho 7
\(S=3^0+3^2+3^4+3^6+...+3^{2014}\)
\(=1+3^2+3^4+3^6+...+3^{2014}\)
\(=\left(1+3^2\right)+3^4\left(1+3^2\right)+...+3^{2012}\left(1+3^2\right)\)
\(=7+3^4.7+...+3^{2012}.7=7\left(1+3^4+...+3^{2012}\right)⋮7\)
Vậy ta có đpcm
Cho: S = 3^0 + 3^2 + 3^4 + 3^6 +.....+ 3^2002
a.Tính S
b.Chứng minh S chia hết cho 7
S = 30 + 32 + 34 + .... + 32002
9S = 32 + 34 + .... + 32002 + 32004
9S - S = (32 + 34 + .... + 32002 + 32004) - (30 + 32 + 34 + .... + 32002)
8S = 32004 - 30
S = \(\frac{3^{2004}-1}{8}\)
CHO S=3^0+3^2+3^4+3^6+...+3^2002. CMR S: 7 LÀ PHÉP CHIA HẾT
góp lại 2 số đầu là ra
tick nhé bạn thân
S=(3^1+3^2+3^3)+(3^4+3^5+3^6)+...+(3^2000+3^2001+3^2002)
S=3.(1+3+3^2)+3^4.(1+3+3^2)+...+3^2000.(1+3+3^2)
S=3.14+3^4.14+...+3^2000.14
S=(3+3^4+...+3^2000).14
=> S chia hết cho 7
Cho S = 3^0 + 3^2 + 3^4 + 3^6 +....+ 3^2002
a) Tính S
b) Chứng minh S chia hết cho 7
a)nhân S với 32 ta dc:
9S=3^2+3^4+...+3^2002+3^2004
=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)
=>8S=32004-1
=>S=32004-1/8
b) ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7
ta có:32004-1=(36)334-1=(36-1).M=7.104.M
=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7
cho S= 3^0+ 3^2+3^4+3^6+.....+3 ^2020.
a) Tính S.
b) chứng minh S chia hết cho 7
Nhân S với 3^2 ta được 9S=3^2+3^4+....+3^2002+3^2004
=>9S-S=(3^2+3^4+....+3^2004)-(3^0+3^2+....+3^2002)
=>8S=3^2004-1
=>S=(3^2004-1)/8
b,ta có S là sô nguyên nên fải chung minh 3^2004-1chia hết cho 7
ta có : 3^2004-1=(3^6)^334-1=(3^6-1).M=728.M=7.104.M
=>3^2004 chia hết cho 7. Mặt khác (7;8)=1 nên S chia hết cho 7
Cho tổng:S=3^0+3^2+3^4+3^6+......+3^2014
a,Tính S
b,Chứng minh S chia hết cho 7
Cho S = 3^0 + 3^2 + 3^4 + 3^6 +......+ 3^2020
a) Tính S
b) Chứng minh rằng S chia hết cho 7