Tìm biểu thức Q ,biết rằng:
\(\frac{x^2+2x}{x-1}\). Q = \(\frac{x^2-4}{x^2-x}\)
GIUPS MIK ZÓI
1. Cho biểu thức
E= \(\frac{x^2-9-\left(4x-2\right)\left(x-3\right)}{x^2-6x+9}\)
a, tìm ĐKXĐ và RG
b, Tính E với x=\(\frac{1}{2}\)
c, Tìm x biết E= 2
2. cho biểu thức
M= \(\frac{x}{2x-2}+\frac{x^2+1}{2-2x^2}\)
a, RG
b. tính x để M = \(\frac{-1}{2}\)
3, cho biểu thức
A= \((\frac{1}{x^2-x}+\frac{1}{x-1}):\frac{x+1}{x^2-2x+1}\)
a, RG
b. Tìm A khi |x| = 2
c. Tìm x biết A=\(\frac{2}{3}\)
d. Tìm x nguyên để A nguyên
e. Tìm GTLN của B= \(x^2.A\)
4. cho biểu thức
D=\((\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}):\frac{x^2-3x}{2x^2-x^3}\)
a, RG
b,Tính D khi |x-5| = 2
CÁC BẠN GIẢI NHANH GIÚP MIK TRONG TUẦN NÀY AK XIN CẢM ƠN HỨA SẼ TICK CHO NHA THANKS
Cho biểu thức: Q = \(\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right)\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)với \(x\ge0,x\ne\frac{1}{4}v\text{à}x\ge1\)
1) Rút gon Q
2) Với giá trị nào của x thì biểu thức Q đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Giúp mik vs
1.Cho biểu thức: Q= \(\frac{x+3}{2x+1}-\frac{x-7}{2x+1}\)
a). Thu gọn biểu thức
b) Tìm các giá trị nguyên của x để Q nhận giá trị nguyên
2. Cho biểu thức A =\(\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)với x khác cộng trừ 2
a) rút gọn biểu thức A
b) chứng tỏ rằng với mọi x thỏa mãn -2<x <2, x khác - 1 phân thức luôn có giá trị âm
( các bạn giúp mình nha, cảm ơn nhiều)
Câu 1:Cho biết thức A = \(\frac{1}{x-1}\)+ \(\frac{4}{x^2-1}\)- \(\frac{2}{x^2-2x+1}\)
a/ Tìm điều kiện xác định của x để biểu thức A xác định
b/ Rút gọn A
Câu 2: Tìm giá trị nhỏ nhất của phân thức B=\(\frac{x^2-2}{x^2+1}\)
Tìm x để giá trị của biểu thức X2 + 2x -2 là nhỏ nhất
\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)
\(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)
\(x^2+1\ge1\). dấu = xảy ra khi x2=0
=> x=0
Vậy \(B_{min}\Leftrightarrow x=0\)
ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)
dấu = xảy ra khi \(x+1=0\)
\(\Rightarrow x=-1\)
Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)
Để A xác định
\(\Rightarrow\hept{\begin{cases}x-1\ne0\\x^2-1\ne0\\x^2-2x+1\ne0\end{cases}}\)
\(\Rightarrow x^2-1\ne0\)
\(\Rightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
b,
cho biểu thức
A= \(\left(\frac{3}{2x+4}+\frac{x}{2-x}+\frac{2x^2+3}{x^2-4}\right)\div\frac{2x-1}{4x-8}\)
a) tìm ĐKXĐ và rút gọn A
b) tính giá trị biểu thức biết /x-1/ =3
c) tìm x để A<2
d) tìm x để /A/=1
a) ĐKXĐ: \(x\ne-2;x\ne2\), rút gọn:
\(A=\left[\frac{3\left(x-2\right)-2x\left(x+2\right)+2\left(2x^2+3\right)}{2\left(x-2\right)\left(x+2\right)}\right]\div\frac{2x-1}{4\left(x-2\right)}\)
\(A=\frac{3x-6-2x^2-4x+4x^2+6}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{4\left(x-2\right)}{2x-1}=\frac{4\left(2x^2-x\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4x\left(2x-1\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4}{x+2}\)
b) Ta có: \(\left|x-1\right|=3\Leftrightarrow\hept{\begin{cases}x-1=3\\x-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\left(n\right)\\x=-2\left(l\right)\end{cases}}}\)
=> Khi \(x=4\)thì \(A=\frac{4}{4+2}=\frac{4}{6}=\frac{2}{3}\)
c) \(A< 2\Leftrightarrow\frac{4}{x+2}< 2\Leftrightarrow4< 2x+4\Leftrightarrow0< 2x\Leftrightarrow x>0\)Vậy \(A< 2,\forall x>0\)
d) \(\left|A\right|=1\Leftrightarrow\left|\frac{4}{x+2}\right|=1\Leftrightarrow\hept{\begin{cases}\frac{4}{x+2}=1\\\frac{4}{x+2}=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\left(l\right)\\x=-6\left(n\right)\end{cases}}}\)Vậy \(\left|A\right|=1\)khi và chỉ khi x = -6
Cho biểu thức: Q= \([\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right).\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}]\)
a, Tìm điều kiện xác định của biểu thức
b, Rút gọn Q
c, Chứng minh rằng với các giá trị của x thỏa mãn điều kiện xác định thì -5 <= Q <= 0
a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)
b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)
\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)
cho biểu thức: [\(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\)]x \(\frac{4x^2-4}{5}\)
a, tìm điều kiện của x để giá trị của biểu thức được xác định?
b,chứng minh rằng: khi giá trị của biểu thức ko bị phụ thuộc vào giá trị của biến x?
Ai giúp mk với!
Phân tích thành nhân tử :
X2 -2x-15
_______________________
Cho A = \(\left(\frac{5x+2}{x^2-10}+\frac{5x-2}{x^2+10}\right)\)\(\frac{x^2-100}{x^2+4}\)
a) Tìm điều kiện cảu x để biểu thức xác định?
b) tính giá trị của A tại X = 20040
_____________________________________
Cho biểu thức : B = \(\frac{x^2+2x}{2x+10}\)+\(\frac{x-5}{x}\)+\(\frac{50-5x}{2x\left(x+5\right)}\)
a) Tìm điều kiện xác định của B?
b) Tìm x để B = 0, B = \(\frac{1}{4}\)
c) tìm x để B>0, B<0?
( giải đc bài nào giải júp mik vs, mik cần gấp lắm huhu)
=x2 +3x-5x-15
=x(x+3)-5(x+3)
=(x+3)(x-5)
Bài 1: Cho biểu thức P=\(\frac{x^4-x}{x^2+x+1}-\frac{2x^2+x}{x}+\frac{2\left(x^2-1\right)}{x-1}\)
a) Rút gọn P.
b) Tìm GTNN của P.
c) Tìm các giá trị dương của x để biểu thức Q=\(\frac{2x}{P}\) nhận giá trị là số nguyên.