Tìm số nguyên tố p sao cho p+10 và p+14 là các số nguyên tố
chứng minh rằng :8p-1 là số nguyên tố thì 8p+1 là hợp số
tìm p;q là số nguyên tố sao cho 7p+qvaf pq+11 đều là số nguyên tố
tìm các số nguyên tố a,b,c sao cho: 2a+3b+6c=78
tìm số nguyên tơố p sao cho các số sau đều là số nguyên tố:
a)p+2 và p+10
b) p+10 và p+20
Bài 6 : Tìm số nguyên tố p sao cho :
a, p + 10 và p + 14 cũng đều là các số nguyên tố .
b, p + 2 , p + 6 , p + 8 và p + 14 cũng là các số nguyên tố
- Vì sao ?
a)
p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3
b)
p=2=>6+p=6+2=8 là hợp số=>loại p = 2
p=3
=>6+p=6+3=9 là hợp số =? loại p=3
p=5
=>p+2=5+2=7
p+6=5+6=11
p+8=5+8=13
p+14=5+14=19
đều là snt => p =5 thỏa mãn
nếu p>5
=>p có dạng :
p=5k+1
=>p+14=5k+1+14=5k+15 =5k+5.3=5(k+3) chia hết cho 5 là hợp số => loại p=5k+1
p=5k+2
=>p+8=5k+2+8=5k+10=5k+2.5=5(k+2) chia hết cho 5 là hợp số => loại p=5k+2
Vậy p=5
Tìm số nguyên tố p sao cho p+10 và p+14 cũng là số nguyên tố
do p là số nguyên tố =>p>=2
xét p=2 => p+10 =12 (không là số nguyên tố)
xét p=3 => p+10 =13 (là số nguyên tố ) ,p+14 =17 (là số nguyên tố)
=> p=3 thỏa mãn đề bài
xét p là số nguyên tố >3 => p không chia hết cho 3 . nếu p chia 3 dư 1
=> p+14 chia hết cho 3 mà p+14 >3 => p+14 không là số nguyên tố => vô lý
nếu p chia 3 dư 2=> p+10 chia hết cho 3 mà p+10 >3 => p+10 không là số nguyên tố
vậy với p là số nguyên tố >3 thì p không thỏa mãn đề bài
p=3 là số nguyên tố duy nhất thỏa mãn đề bài , duyệt nha
Câu này đã có nhiều trên OLM rồi, bạn xem trong câu hỏi tương tự.
Bài này có 3 số, khi chia cho 3 thì 3 số cho ba số dư khác nhau (vì p + 10 = p + 9 + 1; p + 14 = p + 12 + 2). Do vậy mà chúng đều là số nguyên tố khi p = 3 là số chia hết cho 3 duy nhất là số nguyên tố.
Do p là số nguyên tố => p > = 2
Xét p = 2 => p + 10 = 12 ( không là số nguyên tố )
Xét p = 3 => p + 10 = 13 ( là số nguyên tố ) ,p + 14 = 17 ( là số nguyên tố )
=> p = 3 thỏa mãn đề bài
Xét p là số nguyên tố >3 => p không chia hết cho 3 . nếu p chia 3 dư 1
=> p + 14 chia hết cho 3 mà p + 14 > 3 => p + 14 không là số nguyên tố => vô lý
Nếu p chia 3 dư 2 => p + 10 chia hết cho 3 mà p + 10 > 3 => p + 10 không là số nguyên tố
Vậy với p là số nguyên tố > 3 thì p không thỏa mãn đề bài
p = 3 là số nguyên tố duy nhất thỏa mãn đề bài.
Tìm tất cả các số nguyên tố P để P cộng 10 và Phục cộng 14 đều là số nguyên tố.
Nếu p=2 thì p+10=12 là hợp số
p=3 thì p+10=13 là 1 số nguyên tố
=> p=3 thì p+14=17 cũng là 1 số nguyên tố (1)
Từ đó ,ta có:
p>3 thì p=3k+1=>p+14=3k+15 là hợp số
p=3k+2 => p+10=3k+12 cũng là hợp số (2)
Từ (1) và (2) ,thì p=3
Tìm số nguyên tố p, sao cho các số sau cũng là số nguyên tố:
a) p +2 và p+10
b) p+10 và p+20
a, +, p = 2
=> p + 2 = 2 + 2 = 4 ( là hợp số ) => loại
+, p = 3
=> p + 2 = 3+ 2 = 5 ( là số nguyên tố )
p + 10 = 3+ 10 = 13 ( là số nguyên tố )
+, p > 3 => p có dạng 3k+1 hoặc 3k+2
TH1: p = 3k+1
=> p + 2 = 3k + 1 + 2 = 3k + 3 \(⋮\)3 ( là hợp số ) => loại
TH2: p= 3k + 2
=> p + 10 = 3k + 2 + 10 = 3k + 12 \(⋮\)3 ( là hợp số ) => loại
Vậy p = 3
b, +, p = 2
=> p + 10 = 2 + 10 = 12 ( là hợp số ) => loại
+, p = 3
=> p + 10 = 3+ 10 = 13 ( là số nguyên tố )
p + 20 = 3+ 20 = 23 ( là số nguyên tố )
+, p > 3 => p có dạng 3k+1 hoặc 3k+2
TH1: p = 3k+1
=> p + 20 = 3k + 1 + 20 = 3k + 21 \(⋮\)3 ( là hợp số ) => loại
TH2: p= 3k + 2
=> p + 10 = 3k + 2 + 10 = 3k + 12 \(⋮\)3 ( là hợp số ) => loại
Vậy p = 3
tìm số nguyên tố p sao cho p+74 và p+1994 là các số nguyên tố
Tìm số nguyên tố p sao cho p+74 và p+1994 là các số nguyên tố
Tìm số nguyên tố p sao cho p+74 và p+1994 là các số nguyên tố
p = 5, ủng hộ đầu xuân năm mới cho mk nha bạn
Tìm số nguyên tố p sao cho p+74 và p+1994 là các số nguyên tố