Giaỉ và biện luận hệ phương trình sau: \(\hept{\begin{cases}\left(m+5\right)x+3y=1\\mx+2y=-4\end{cases}}\)
Hướng dẫn : Dùng phương pháp cộng đại số dc vế pt 1 ẩn x
giải hệ phương trình
\(\hept{\begin{cases}7\left(2x+y\right)-5\left(3x+y\right)=6\\3\left(x+2y\right)-2\left(x+3y\right)=-6\end{cases}}\)
\(\hept{\begin{cases}7\left(2x+y\right)-5\left(3x+y\right)=6\\3\left(x+2y\right)-2\left(x+3y\right)=-6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}14x+7y-15x-5y=6\\3x+6y-2x-6y=-6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-x+2y=6\\x=-6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-6\\y=0\end{cases}}\)
Tìm giá trị của m để hệ phương trình sau có nghiệm duy nhất
\(\hept{\begin{cases}\left(m+5\right)x+3y=1\\mx+2y=-4\end{cases}}\)
hệ phương trình có 1 nghiệm duy nhất khi a/a' khác b/b'
=>(m+5)/m khác 3/2
=>2m+10 khác 3m
=>m khác 10
TÌm giá trị của m để hệ phương trình sau có nghiệm duy nhất
\(\hept{\begin{cases}\left(m+5\right)x+3y=1\\mx+2y=-4\end{cases}}\)
HPT có nghiệm duy nhất \(\Leftrightarrow\frac{m+5}{m}\ne\frac{3}{2}\Leftrightarrow m\ne10\)
nếu không được dùng công thức như trên, ta có thể làm cụ thể
PT tương đương với :
\(\hept{\begin{cases}2\left(m+5\right)x+6y=2\\3mx+6y=-12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\left(10-m\right)=14\\y=\frac{-4-mx}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{14}{10-m}\\y=\frac{-4-mx}{2}\end{cases}}\)
Để HPT có nghiệm duy nhất thì \(10-m\ne0\Leftrightarrow m\ne10\)
Tính giá trị của m để hệ phương trình sau có nghiêm duy nhất
\(\hept{\begin{cases}\left(m+5\right)x+3y=1\\mx+2y=-4\end{cases}}\)
sử dụng phương pháp cộng đại số ta có:
mx+5x+3y+mx+2y=-3
\(\Leftrightarrow\)2mx+5x+3y
\(\Leftrightarrow\)2mx+5x+5y+3=0
\(\Leftrightarrow\)x(2m+5)=-5y-3
ta biện luận hpt trên:
+Với m\(\ne\)\(\frac{-5}{2}\)rút x từ hpt ta đc x=\(\frac{1-3y}{m+5}\)
thay vào pt2 ta đc y=\(\frac{5m+20}{m-10}\)\(\Rightarrow\)
x=\(\frac{15m+59}{\left(10-m\right)\left(m+5\right)}\)(đây là n0 duy nhất của hpt)
+Với m=\(\frac{-5}{2}\)hpt có vô số nghiệm (x;\(\frac{-3}{5}\))
Vậy.......
giải hệ phương trình: \(\hept{\begin{cases}x-y=2\\5x-3y=10\end{cases}}\)
bằng phương pháp thế
Ta có : x - y = 2 => x=2+y (1)
Mà 5x-3y=10 (2)
Thay (1) vào (2) ta dc : 5(2+y) - 3y =10
=> y = 0
=> x =0+2=2
\(5x-3y=10\)
\(\Leftrightarrow3\left(x-y\right)+2x=10\)
\(\Leftrightarrow6+2x=10\)
\(\Leftrightarrow x=2\)
\(\Leftrightarrow\hept{\begin{cases}5x-3y=10\\x-y=2\end{cases}}\)
\(\Rightarrow4x-2y=8\Rightarrow2x-y=4\)
\(\Rightarrow y=2x-4\)
Thay : \(x-2x+4=2\)
\(\Rightarrow x=2\)
\(\Rightarrow y=0\)
Giải các hệ phương trình :
a) \(\hept{\begin{cases}2x\left(x+1\right)\left(y+1\right)+xy=-6\\2y\left(y+1\right)\left(x+1\right)+yx=6\end{cases}x,y\inℝ}\)
b) \(\hept{\begin{cases}x^3+3x^2y-4y^3+x-y=0\\\left(x^2+3x+2\right)\left(y^2+7y+12\right)=24\end{cases}}\)
b, \(x^3+3x^2y-4y^3+x-y=0\)
\(\Leftrightarrow x^3-x^2y+4x^2y-4xy^2+4xy^2-4y^3+x-y=0\)
\(\Leftrightarrow x^2\left(x-y\right)+4xy\left(x-y\right)+4y^2\left(x-y\right)+\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+4xy+4y^2+1\right)=0\)
\(\Leftrightarrow x-y=0\Leftrightarrow x=y\)
Khi đó pt (2) của hệ trở thành:
\(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)
\(\Leftrightarrow\left(x^2+5x+5\right)^2-1=24\)
\(\Leftrightarrow\left(x^2+5x+5\right)^2-5^2=0\)
\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy hệ có nghiệm \(\left(x;y\right)\in\left\{\left(0;0\right),\left(-5;-5\right)\right\}\)
giải hệ phương trình
\(\hept{\begin{cases}xy+2x+3y=10\\\frac{1}{\left(x+2\right)\left(x+4\right)}+\frac{1}{\left(y+1\right)\left(y+3\right)}=\frac{2}{15}\end{cases}}\)
Bài 1: Giải các hệ phương trình sau
a) \(\hept{\begin{cases}\left|x\right|+3y=5\\-x+y=-1\end{cases}}\)
b)\(\hept{\begin{cases}y=2\left|x-1\right|+3\\x=2y-5\end{cases}}\)
c) \(\hept{\begin{cases}\left(x+y\right)\left(x-2y\right)=0\\x-5y=3\end{cases}}\)
Tìm giá trị của m để hệ phương trình có nghiẹm duy nhất
\(\hept{\begin{cases}\left(m+5\right)x+3y=1\\mx+2y=-4\end{cases}}\)
\(\hept{\begin{cases}\left(m+5\right)x+3y=1\\mx+2y=-4\end{cases}}\)
Để pt có nghiệm duy nhất => \(\frac{m+5}{m}\ne\frac{3}{2}\)
<=> 2(m+5)\(\ne\)3m
<=> 2m+10\(\ne\)3m
<=> m\(\ne\)10
Vậy với m khác 10 thì PT có nghiệm duy nhất