tìm điều kiện để n+7 chia hết cho n+1 với n là số tự nhiên
a) Chứng minh 10n+18n -1 chia hết cho 27 với n là số tự nhiên
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6 cho 4 dư 1 cho 19 dư 11
c) Cho p,q là các số nguyên tố lớn hơn 3 thoả mãn điều kiện p=q+2. Tìm số dư khi chia (p+q)cho 12
d) Cho P=3n+2/2n-1 trong đó n là số tự nhiên. Tìm n để P có giá trị lớn nhất
e) Tìm số tự nhiên n nhỏ nhất để các phân số sau tối giản :
7/n+9;8/n+10;9/n+11;.........;31/n+33
Đặt A=102+18n-1
=10n-1+18n
=9999...9(n c/số 9)+18n
=9.11111...1(n c/số 1)+9.2n
=9(1111...1(n c/số 1+2n)
mà 111...1(n c/số 1)=n+9q
=>A=9.(9q+n+2n)
=>A=9(9q+3n)
=9.3.(3q+n)
=27(3q+n)
=>\(A⋮27\)
vậy...(đccm)
mấy bài sau dễ òi
bn tự làm nhé
Nếu dễ thì bạn làm nốt đi. Mà bạn học lớp nào và ở đâu?
Giả sử n là số tự nhiên thỏa mãn điều kiện n(n+1)+7 không chia hết cho 7. Chứng minh rằng 4n^3-5n-1 không là số chinh phương
T=a3a2+2b2+c2+b3b2+2c2+a2+c3c2+2a2+b2T=aa2+c2+2(a2+b2)+bb2+a2+2(b2+c2)+cc2+b2+2(c2+a2)≤a2ac+4ab+b2ab+4bc+c2bc+4ca=12(1c+2b+1a+2c+1b+2c)≤12(1b+b+c+1a+c+c+1c+c+b)≤118(1a+1a+1b+1b+1b+1c+1c+1c+1a)=16(1a+1b+1c)=16(ab+bc+caabc)≤a2+b2+c26abc=3abc6abc=12T=a3a2+2b2+c2+b3b2+2c2+a2+c3c2+2a2+b2T=aa2+c2+2(a2+b2)+bb2+a2+2(b2+c2)+cc2+b2+2(c2+a2)≤a2ac+4ab+b2ab+4bc+c2bc+4ca=12(1c+2b+1a+2c+1b+2c)≤12(1b+b+c+1a+c+c+1c+c+b)≤118(1a+1a+1b+1b+1b+1c+1c+1c+1a)=16(1a+1b+1c)=16(ab+bc+caabc)≤a2+b2+c26abc=3abc6abc=12
Dấu bằng xảy ra khi và chỉ khi {a2+b2+c2=3abca=b=c⇔3a2=3a3⇔a=1⇒a=b=c=1
Tìm điều kiện của số tự nhiên n (n > 0) để đơn thức B = 4 x 4 y 4 chia hết đơn thức C = x n - 1 y 4 là
A. n = 5
B. 0 < n ≤ 5
C. n ≥ 5
D. n = 0
Ta có B : C = ( 4 x 4 y 4 ) : ( x n - 1 y 4 )
Đơn thức B chia hết cho đơn thức C khi 4 ≥ n – 1 => n ≤ 5
Hay 0 < n ≤ 5
Đáp án cần chọn là: B
Tìm số tự nhiên n để 2n+7 chia hết cho n+3 (với n là số tự nhiên)
\(2n+7=\left(n+3\right)+\left(n+4\right)=\left(n+3\right)+\left(n+3\right)+1\)
\(Ta\) \(Co\)\(:\) \(\frac{\left(n+3\right)+\left(n+3\right)+1}{n+3}\)\(=2+\frac{1}{n+3}\)
\(De\) \(\left(2n+7\right)^._:\left(n+3\right)\) \(=>\)\(1chia\vec{ }het\vec{ }cho\vec{ }n+3\)
=>n+3 \(\in U_{\left(1\right)}\)
ta co : \(U_{\left(1\right)}\in\left(1;-1\right)\)
ta co bang :
n+3 | 1 | -1 |
n | -2 | -4 |
vi n \(\in\)N
=>n khong co gia tri
bạn Lan tính tổng các số tự nhiên liên tiếp từ 1 đến n và nhận thấy số đó chia hết cho 29. Loan tính tổng các số tự nhiên từ 1 đến m và cũng nhận thấy tổng đó chia hết cho 29. tìm các số tự nhiên m và n thỏa mãn điều kiện m<n<50
giúp mình với ạ
bạn Lan tính tổng các số tự nhiên liên tiếp từ 1 đến n và nhận thấy số đó chia hết cho 29. Loan tính tổng các số tự nhiên từ 1 đến m và cũng nhận thấy tổng đó chia hết cho 29. tìm các số tự nhiên m và n thỏa mãn điều kiện m<n<50
giúp mình với ạ
Bài 1 :Cho tổng A=12+15+21+x với x€N. Tìm điều kiện của x để A chia hết cho 3 , để A ko chia hết cho 3
Bài 2:Khi chia số tự nhiên a cho 24, ta được số dư là 10. Hỏi số a có chia hết cho 2 ko? Có chia hết cho 4 ko
tìm số tự nhiên n nhỏ nhất thỏa mãn cả ba điều kiện sau
n chia hết cho 7
n-35 chia hết cho 100
tổng các chữ số của n=35
Tìm tất cả các số tự nhiên n để 2n-1 chia hết cho 7.
CMR với mọi số tự nhiên n thì 2n+1 không chia hết cho 7
* n = 3k
A = 2ⁿ - 1 = 2^3k - 1 = 8^k - 1 = (8-1)[8^(k-1) + 8^(k-2) +..+ 8 + 1] = 7p chia hết cho 7
* n = 3k+1
A = 2^(3k+1) -1 = 2.2^3k - 1 = 2(8^k - 1) + 1 = 2*7p + 1 chia 7 dư 1
* n = 3k+2
A = 2^(3k+2) -1 = 4.8^k -1 = 4(8^k - 1) + 3 = 4*7p + 3 chia 7 dư 3
Tóm lại A = 2ⁿ -1 chia hết cho 7 khi và chỉ khi n = 3k (k nguyên dương)