Tìm các số nguyên x,y biết :\(\frac{x}{-3}=\frac{-8}{y}\) và x<y
15. Tìm các số nguyên x, y, z biết \(\frac{-4}{8}=\frac{x}{-10}=\frac{-7}{y}=\frac{z}{-24}\)
2.3. Tìm các số nuyên x và y biết \(\frac{-2}{x}=\frac{y}{3}\)và x < 0 < y
2.4*. Tìm các số nguyên x và y, biết \(\frac{x-3}{y-2}=\frac{3}{2}\)và x - y = 4
giải đầy đủ ra giùm. thanks
nè, không làm thôi ằ nhagg. khó thì đừng gửi câu trả lời làm gì cho mệt nha bạn
Tìm các số nguyên x và y biết: \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
Tìm các số nguyên x , y biết :
\(\frac{x}{8}-\frac{2}{y}=\frac{3}{4}\)
Câu hỏi : x/8 - 2/y = 3/4
Trả lời : 8/8 - 2/8 = 3/4
Học tốt
2.3 Tìm các số nguyên x và y , biết :
\(\frac{-2}{x}\)= \(\frac{y}{3}\) và x < 0 < y
2.4* Tìm các số nguyên x và y , biết :
\(\frac{x-3}{y-2}=\frac{3}{2}\)và x - y = 4
Tìm các số nguyên x và y , biết rằng :
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{20}{4x}+\frac{xy}{4x}=\frac{1}{8}\)
\(\Rightarrow\frac{20+xy}{4x}=\frac{1}{8}\)
\(\Rightarrow\left(20+xy\right).8=4x\)
\(\Rightarrow160+8xy=4x\)
\(\Rightarrow40+2xy=x\)
\(\Rightarrow40=x\left(1-2y\right)\)
\(\Rightarrow x\left(1-2y\right)\inƯ\left(40\right)\)
Đến đây bạn tự làm nhé!
ta có :\(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\frac{5}{x}=\frac{1-2y}{8}\)
=>\(40=x\left(1-2y\right)\)
=>x và 1-2y là ước của 40 =1;40;5;8;20;2;10;4...Sau đó thay vào làm đk
Tìm các số nguyên x và y biết rằng:
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
Theo đề bài suy ra \(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1-2y}{8}\)
\(\Leftrightarrow x=\frac{8}{1-2y}.5\)
Dễ thấy 1-2y là số lẻ nên ƯCLN(8;1-2y) = 1 \(\Rightarrow\frac{x}{8}=\frac{5}{1-2y}\)
; mà x, y nguyên khi 1-2y phải là ước của 5 <=> 1 - 2y \(\in\) {-1; 1; -5; 5}
- Xét 1-2y = -1 => y = 1 => x = -40
- Xét 1-2y = 1 => y = 0 => x = 40
- Xét 1-2y = -5 => y = 3 => x = -8
- Xét 1-2y = 5 => y = -2 => x = 8
Vậy có 4 cặp (x,y) nguyên (-40;1) ; (40;0) ; (-8;-5) ; (8;5)
Tìm các số nguyên x và y, biết rằng:
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{2y}{8}=\frac{1-2y}{8}\)
=>x(1-2y)=5.8=40
do 1-2y là 1 số lẻ và là ước lẻ của 40
nên 1-2y ={-1;1;-5;5}
+)1-2y=-1 =>y=1
=>x=-40
+1-2y=1=>y=0
=>x=40
+)1-2y=-5 =>y=3
=>x=-8
+)1-2y=5=>y=-2
=>x=8
Vậy có 4 cặp (x;y) thỏa mãn bài toán là:...
^...^ ^_^
Ta có:
\(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1}{8}-\frac{2y}{8}=\frac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\Rightarrow1-2y\) là ước lẻ của 40
Đáp số:
x | 40 | -40 | 8 | -8 |
y | 0 | 1 | -2 | 3 |
1. Tìm các số x, y, z biết rằng:\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\) và x + y - z = 69
2. Tìm các số x, y, z biết rằng: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4y = 50
3. Tìm các số x, y, z, t biết rằng:
x: y: z : t = 15: 7 :3 :1 và x - y + z - t = 10
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
Tìm các số nguyên x và y, biết :
\(\frac{x-3}{y-2}=\frac{3}{2}\)và x - y = 4
Ta có \(\frac{x-3}{y-2}=\frac{3}{2}\)
Nên 2 ( x - 3 ) = 3 ( y - 2 )
Do đó 2x - 6 = 3y - 6 nên 2x = 3y
Suy ra 2x - 2y = y hay 2 ( x - y ) = y
Mà x - y = 4 nên 2.4 = y
Suy ra y = 8
\(x=\frac{3y}{2}=\frac{3.8}{2}=12\)
Vây x = 12 ; y = 8
\(\frac{x-3}{y-2}=\frac{3}{2}\)
=> \(\left(x-3\right).2=3\left(y-2\right)\)
=> \(2x-6=3y-6\)
=> \(2x=3y\)
Khi đó ,ta có: x - y = 4
=> 2(x - y) = 8
=> 2x - 2y = 8
=> 3y - 2y = 8
=> y = 8
=> x = 4 + 8 = 12
Vậy x = 12 và y = 8