Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Châu
Xem chi tiết
KHANH QUYNH MAI PHAM
Xem chi tiết
suckplaying
8 tháng 7 2019 lúc 21:57

0.5 nha bạn

Chúc bạn học tốt! :)

Nguyễn Thị Bích Ngọc
8 tháng 7 2019 lúc 22:31

\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-x}+1\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{3}{\left(x+1\right)\left(x-2\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow x^2-4+3x+3=3+x^2-2x+x-2\)

\(\Leftrightarrow x^2-x^2+3x+2x-x=1+4-3\)

\(\Leftrightarrow4x=2\)

\(\Leftrightarrow x=\frac{1}{2}\)

Nguyễn Thị Bích Ngọc
8 tháng 7 2019 lúc 22:32

\(ĐKXĐ:\hept{\begin{cases}x+1\ne0\\x-2\ne0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)

Vậy nên x=1/2 thỏa mãn ĐKXĐ nhé!

Hannah nguyễn
Xem chi tiết
Edogawa Conan
24 tháng 3 2020 lúc 21:52

\(\frac{2}{x^3-x^2-x+1}=\frac{3}{1-x^2}-\frac{1}{x+1}\)

<=> \(\frac{2}{\left(x^2-1\right)\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}+\frac{1}{x+1}=0\)

<=> \(\frac{2}{\left(x-1\right)^2\left(x+1\right)}+\frac{3\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}+\frac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}=0\)

<=> \(2+3x-3+x^2-2x+1=0\)

<=> x2 + x = 0

<=> x(x + 1) = 0

<=> \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy S = {0; -1}

Khách vãng lai đã xóa
nguyễn đình thành
Xem chi tiết
KHANH QUYNH MAI PHAM
Xem chi tiết
Nguyễn Văn Tuấn Anh
9 tháng 7 2019 lúc 21:11

\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\) 

\(\frac{\left(x+2\right)\left(x-2\right)+3\left(x+1\right)}{x^2-x-2}=\frac{3+x^2-x-2}{x^2-x-2}\) 

\(x^2-4+3x+3=1+x^2-x\) 

\(x^2+3x-1-1-x^2+x=0\) 

\(4x-2=0\) 

\(4x=2\Leftrightarrow x=\frac{1}{2}\)  

Vậy.....

Ngọc Nguyễn
9 tháng 7 2019 lúc 21:14

\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)

\(\Leftrightarrow\)\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{\left(x+1\right).\left(x-2\right)}+1\)

ĐKXĐ: \(x\ne-1,2\)

\(\frac{\left(x+2\right).\left(x-2\right)}{\left(x+1\right).\left(x-2\right)}+\)\(\frac{3.\left(x+1\right)}{\left(x+1\right).\left(x-2\right)}=\)\(\frac{3}{\left(x+1\right).\left(x-2\right)}+\frac{\left(x+1\right).\left(x-2\right)}{\left(x+1\right).\left(x-2\right)}\)

\(\Leftrightarrow\) \(\left(x^2-4\right)\) \(+3.\left(x+1\right)=\)\(3+\left(x+1\right).\left(x-2\right)\)

\(\Leftrightarrow\) x2 - 4 + 3x + 3 = 3 + x2 - x - 2

\(\Leftrightarrow\) x2 + 3x - x2 + x = 4 - 3 + 3 - 2

\(\Leftrightarrow\) 4x = 2

\(\Leftrightarrow\)\(x=\frac{1}{2}\)

Vậy phương trình có nghiệm là: \(x=\frac{1}{2}\)

Thiên Ân
9 tháng 7 2019 lúc 21:18

\(\frac{\left(x+2\right)\left(x-2\right)+3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{3+x^2-x-2}{x^2-x-2}\)

\(\frac{x^2-2^2+3x+3}{x^2-2x+x-2}=\frac{3+x^2-x-2}{x^2-x-2}\)

\(\frac{x^2+3x-1-3-x^2+x+2}{x^2-x-2}=0\)

\(\frac{4x-3}{x^2-x-2}=0\)

\(\Leftrightarrow4x-3=0\Leftrightarrow x=\frac{3}{4}\)

꧁WღX༺
Xem chi tiết
Lê Tài Bảo Châu
1 tháng 3 2020 lúc 20:06

\(x-\frac{\frac{x}{2}-\frac{3+x}{4}}{2}=3-\frac{\left(1-\frac{6-x}{3}\right).\frac{1}{2}}{2}\)

\(\Leftrightarrow2x-\frac{x}{2}+\frac{3+x}{4}=6-\frac{1}{2}+\frac{6-x}{6}\)

\(\Leftrightarrow24x-6x+9+3x=72-6+12-2x\)

\(\Leftrightarrow23x=69\)

\(\Leftrightarrow x=3\)

Vậy nghiệm của pt x=3

Khách vãng lai đã xóa
Nguyễn Thị Ngọc Mai
Xem chi tiết
tran huy vu
23 tháng 3 2019 lúc 22:42

a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)

\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)

\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)

\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0

\(x-1=0\)

\(x=1\)

Dương Phương Linh
Xem chi tiết
phuong
22 tháng 4 2017 lúc 22:20

\(a,\Leftrightarrow5\left(x-2\right)-15x\le9+10\left(x+1\right)\)

\(\Leftrightarrow5x-10-15x\le9+10x+10\)

\(\Leftrightarrow-20x\le29\)

\(\Leftrightarrow x\ge-1,45\)

Vậy ...........

\(b,\Rightarrow\left(x+2\right)-3\left(x-3\right)=5\left(x-2\right)\)

\(\Leftrightarrow x+2-3x+9-5x+10=0\)

\(\Leftrightarrow-7x+21=0\)

\(\Leftrightarrow x=3\)

Vậy ..............

nguyễn kim thương
23 tháng 4 2017 lúc 12:23

 \(\frac{x-2}{6}-\frac{x}{2}\le\frac{3}{10}+\frac{x+1}{3}\Leftrightarrow\frac{5\left(x-2\right)}{30}-\frac{15x}{30}\le\frac{9}{30}+\frac{10\left(x+1\right)}{30}\)

\(\Leftrightarrow5x-10-15x-9-10x-10\le0\) 

 \(\Leftrightarrow-20x-29\le0\Leftrightarrow\left(-20x\right)\cdot\frac{-1}{20}\ge29\cdot-\frac{1}{20}\)

 \(\Leftrightarrow x\ge-\frac{29}{20}\)

nguyễn kim thương
23 tháng 4 2017 lúc 12:35

ĐKXĐ : \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

\(\frac{x+2}{x^2-5x+6}-\frac{3}{x-2}=\frac{5}{x-3}\) 

 \(\Rightarrow\frac{x+2}{x-2x-3x+6}-\frac{3}{x-2}=\frac{5}{x-3}\)

 \(\Rightarrow\frac{x+2}{\left(x-2\right)\left(x-3\right)}-\frac{3}{x-2}=\frac{5}{x-3}\)

 \(\Rightarrow\frac{x+2}{\left(x-2\right)\left(x-3\right)}-\frac{3\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}=\frac{5\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

 \(\Rightarrow x+2-3x+9-5x+10=0\)

\(\Leftrightarrow-7x+21=0\Leftrightarrow x=3\) (nhân)

 tập nghiệm của phương trình là S= 3

OoO Kún Chảnh OoO
Xem chi tiết
Bùi Thế Hào
19 tháng 3 2018 lúc 16:58

Điều kiện: x khác (-3,-2,1,4)

PT <=> 

\(1+\frac{2}{x-1}+1-\frac{4}{x+2}+1-\frac{6}{x+3}+1+\frac{8}{x-4}=4\)

<=> \(\frac{1}{x-1}-\frac{2}{x+2}-\frac{3}{x+3}+\frac{4}{x-4}=0\)

<=> (x+2)(x+3)(x-4)-2(x-1)(x+3)(x-4)-3(x-1)(x+2)(x-4)+4(x-1)(x+2)(x+3)=0

<=> (x3+x2-14x-24)-2(x- 2x2-11x+12) - 3(x3 - 3x2- 6x+8) + 4(x3+4x2 + x-6) = 0

<=> x3+x2-14x-24-2x3 + 4x2+22x-24 - 3x3 + 9x2+ 18x-24 + 4x3+16x2 + 4x-24 = 0

<=> 30x2 + 30x -96=0

<=> 5x2 + 5x -16 = 0

Giải ra được: \(\orbr{\begin{cases}x_1=\frac{-5-\sqrt{345}}{10}\\x_2=\frac{-5+\sqrt{345}}{10}\end{cases}}\)

Yim Yim
Xem chi tiết
Cô Hoàng Huyền
15 tháng 9 2017 lúc 10:50

a) ĐK: \(\hept{\begin{cases}x\ne3\\x\ne1\end{cases}}\)

Đặt \(\frac{3}{x-3}=a;\frac{2}{x-1}=b\Rightarrow pt\Leftrightarrow a-b=\frac{1}{b}-\frac{1}{a}\)

\(\Leftrightarrow a-b=\frac{a-b}{ab}\Leftrightarrow\left(a-b\right)\left(1-\frac{1}{ab}\right)=0\)

TH1: \(a-b=0\Leftrightarrow\frac{3}{x-3}=\frac{2}{x-1}\Leftrightarrow3\left(x-1\right)-2\left(x-3\right)=0\Leftrightarrow x=-3\left(tm\right)\)

TH2: \(1-\frac{1}{ab}=0\Leftrightarrow\frac{3}{x-3}.\frac{2}{x-1}=1\Leftrightarrow x^2-4x+3=6\Leftrightarrow\orbr{\begin{cases}x=2+\sqrt{7}\\x=2-\sqrt{7}\end{cases}}\left(tm\right)\)

b) ĐK: \(x\ge2\)

Đặt \(\sqrt{x-2}=t\left(t\ge0\right)\Rightarrow x=t^2+2\)

Phương trình trở thành \(\left(t^2+2\right)^2-5\left(t^2+2\right)+8=2t\)

\(\Leftrightarrow t^4+4t^2+4-5t^2-10-2t+8=0\)

\(\Leftrightarrow t^4-t^2-2t+2=0\Leftrightarrow t^2\left(t^2-1\right)-2\left(t-1\right)=0\)

\(\Leftrightarrow\left(t-1\right)\left[t^2\left(t+1\right)-2\right]=0\Leftrightarrow\left(t-1\right)\left(t^3+t^2-2\right)=0\)

\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t+2\right)=0\)

\(\Leftrightarrow t=1\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x=3\left(tm\right)\)