chứng tỏ rằng trong bốn số tự nhiên liên tiếp có một số chia hết cho 4
Chứng tỏ rằng:
a) Trong hai số tự nhiên liên tiếp, có một số chia hết cho 2.
b) Trong ba số tự nhiên liên tiếp, có một số chia hết cho 3.
a) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))
Nếu m chia hết cho 2 thì ta có điều cần chứng minh
Nếu n = 2k + 1 thì n + 1 = 2k + 2 chia hết cho 2
b) Gọi 2 số tự nhiên liên tiếp đó là n ; n + 1 ( \(n\in N\))
Ta có: n + ( n + 1 ) + ( n + 2 ) = 3n + 3 chia hết cho 3
=> ĐPCM
Bài 1 :
a.Chứng tỏ rằng trong ba số tự nhiên liên tiếp luôn có một số chia hết cho 3.
b.Chứng tỏ rằng trong năm số tự nhiên liên tiếp luôn có một số chia hết cho 5.
c.Chứng tỏ rằng trong hai số tự nhiên liên tiếp luôn có một số chia hết cho 2.
a) Chứng minh rằng trong hai số tự nhiên liên tiếp có một số tự nhiên chhia hết cho 2
b) Chứng minh rằng trong ba số tư nhiên liên tiếp có một số chia hết cho 3
c) Chứng minh tích của hai số chẵn liên tiếp chia hết cho 4
c)
gọi 2 số chẳn liên tiếp là 2k ;2k+2 (k thuộc N)
ta có \(2k.\left(2k+2\right)=2k.2k+2k.2\)
\(=2.2.k.k+4k\)
\(=4k^2+4k\)
mà \(4k^2+4k\) chia hết cho 4
=>\(2k.\left(2k+2\right)\) chia hết cho 4
a)Goi 2 so tu nhien lien tiep la a;a+1
Neu a la so chan:a.(a+1) la so chan hay a.(a+1) chia het cho 2
Neu a la so le:a+1 la so le
Vay tich2 so tu nhien lien tiep chia het cho 2
a)
gọi 2 số tự nhiên liên tiếp là 2k;2k+1. ta có:
*nêu 2k lẻ=>2k+1 chẳn =>2k+1 chia hết cho 2
*nếu 2k+1 lẻ=> 2k chẳn =>2k chia hết cho 2
vậy DPCM
Chứng tỏ rằng trong 5 số tự nhiên liên tiếp có 1 số chia hết cho 5
Gọi 5 số tự nhiên liên tiếp đó là a, a+1, a+2, a+3, a+4.
Nếu \(a=5k\Rightarrow a⋮5\)
Nếu \(a=5k+1\Rightarrow a+4=5k+1+4=5k+5⋮5\)
\(\Rightarrow a+4⋮5\)
Nếu \(a=5k+2\Rightarrow a+3=5k+2+3=5k+5⋮5\)
\(\Rightarrow a+3⋮5\)
Nếu \(a=5k+3\Rightarrow a+2=5k+3+2=5k+5⋮5\)
\(\Rightarrow a+2⋮5\)
Nếu \(a=5k+4\Rightarrow a+1=5k+4+1=5k+5⋮5\)
\(\Rightarrow a+1⋮5\)
Vậy trong 5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5.
a) Chứng minh rằng
Trong 4 số tự nhiên liên tiếp có 1 số chia hết cho 4
b) CHứng minh rằng
Trong n số tự nhiên liên tiếp có 1 số chia hết cho n
giải chi tiết ra nhé
Chứng minh rằng rằng 3 số tự nhiên liên tiếp luôn có một số chia hết cho 3.
Goi 3 so tn lien tiep la a,a+1 va a+2 (a thuoc N)
Ta xet 3 truong hop ;
Suy ra : a chia het cho 3
Th2 : a chia cho 3 du 1
Ta co : a=3q+1
a+2=3q+1+2
a+2=3q+3
a+2=3q+3.1
a+2=3.(q+1)
Suy ra :a+2 chia het cho 3
TH3 :a chia cho 3 du 2
Ta co : a=3q+2
a+1=3q+2+1
a+1=3q+3
a+1=3q+3.1
a+1=3.(q+1)
Suy ra : a+1 chia het cho 3
Vay trong 3 so tn lien tiep cho duy nhat 1 so chia het cho 3
chứng tỏ rằng tổng của 3 số tự nhiên liên tiếp chia hết cho 3
Gọi 3 stn liên tiếp là: a;a+1;a+2
Ta có : a+a+1+a+2=3a+(1+2)=3a+3
Mà 3a chia hết cho 3 ; 3 chia hết cho 3
Nên 3a+3 chia hết cho 3
Vậy tổng 3 stn liên tiếp chia hết cho 3
Gọi 3 số tự nhiên liên tiếp đó lần lượt là a;a+1;a+2
ta có :a+(a+1)+(a+2)=3a +3=3.(a+1) chia hết cho3
Vậy 3 số tự nhiên liên tiếp chia hết cho 3
Giải :
Tổng 3 STN liên tiếp bằng :
A + ( A +1 ) + ( A + 2 )
= ( A + A + A ) + ( 1 + 2 )
= 3A + 3
Mà 3A chia hết cho 3; 3 chia hết cho 3
\(\Rightarrow\)A + ( A + 1 ) + ( A + 2 ) chia hết cho 3 với mọi A ( đpcm ).
Cho 10 số tự nhiên bất kì :\(a_1,a_2,...,a_{10}\). Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10
Gọi số tự nhiên đầu là a
Ta có 10 số đó sẽ là:
a;A+1;A+2;A+3;a+4;...;a+10
vì khi chia a cho 10 thì sẽ dư từ 0 đến 9, Nên
Nếu cộng a cho một đại lượng từ 0 đến 9 sẽ chia hết cho 10
Chứng tỏ trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
Giúp với ạ :< 1h nữa là có tiết học r :<
mik ko bít
I don't now
................................
.............