Tìm GTNN của biểu thức:
A= lx-3l + 11
B= lx+11l + ly-2l -2020
tìm GTNN của lx-1l+ lx-2l +lx-3l+ lx-4l
áp dụng tính chất : lx| = |-x|
|x|+|y|\(\ge\)|x+y|
ta được lx-1l+ lx-2l +lx-3l+ lx-4l \(\ge\)|x-1+2-x+x-3-x+4|=4
vậy giá trị nhỏ nhất là 4
dấu = xảy ra khi tất cả cùng dấu
cậu nên mua quyển sách mình nói nêu là dân chuyên toán
Tìm GTNN của T= lx-1l + lx-2l + lx-3l + lx-4l
Ta có
T=/x-1/+/x-2/+/x-3/+/x-4/
=/x-1/+/2-x/+/x-3/+/4-x/
Áp dụng bất đẳng thức /A/+/B/ \(\ge\)/A+B/
=>T \(\ge\)/x-1+2-x+x-3+4-x/=/2/=2
nhớ tick mình nha
Giải giúp mình với tìm x, y lx+3l = lx-1l = 16/( ly-2l + ly+2l )
tìm x,y thỏa mãn: lx - 1l + lx - 2l + ly - 3l + lx - 4l = 3
Lập bảng xét dấu là ra thôi bài này dễ mà
Tìm GTNN của:A=lx-3l+lx-2l
Ta đã biết với mọi x,y thuộc Q thì \(\left|x+y\right|\le\left|x\right|+\left|y\right|\).
Đẳng thức xảy ra khi \(xy\ge0\)
Ta có : \(A=\left|x-3\right|+\left|x-2\right|=\left|x-3\right|+\left|2-x\right|\ge\left|x-3+2-x\right|=\left|-1\right|=1\)
Vậy \(A\ge1\), A đạt giá trị nhỏ nhất là 1 khi \(2\le x\le3\)
Phải không ta???
Ta có A=|x-3|+|x-2|
= |3-x|+|x-2|
\(\ge\)\(\left|3-x+x-2\right|\)=|1|=1
=> GTNN của A=1 \(\Leftrightarrow\left(3-x\right)\left(x-2\right)\ge0\)
\(\Leftrightarrow2\le x\le3\)
Vậy Min A=1 khi \(2\le x\le3\)
tk mk nha*****CHÚC BẠN HỌC GIỎI*****Tìm GTNN của:A=lx-3l+lx-2l
A=\(\left|x-3\right|+\left|x-2\right|\)
A= \(\left|3-x\right|+\left|x-2\right|\ge\left|3-x+x-2\right|\)
A \(\ge\left|1\right|\)=1
vậy Amin=1 khi x=3 hoặc x=2
Tìm giá trị nhỏ nhất của biểu thức lx - 1l + lx - 2l + lx -3l + ... + lx - 100l.
bạn nói cách giải hộ mk với
Tìm giá trị nhỏ nhất của biểu thức:P=lx+3l+lx-2l+lx-5l
ta có \(P=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|+\left|x-2\right|\)
Áp dụng tính chât dấu giá trị tuyệt đối ta có
\(\left|x+3\right|+\left|5-x\right|\ge\left|x+3+5-x\right|=8\)
mà \(\left|x-2\right|\ge0\)
\(\Rightarrow P\ge8\)
dấu = xảy ra <=>\(\hept{\begin{cases}\left(x+3\right)\left(5-x\right)\ge0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(x-5\right)\ge0\\x=2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}5\ge x\ge-3\\x=2\end{cases}}\)
<=> x=2
vậy Pmin =8 <=> x=2
Tìm giá trị nhỏ nhất của biểu thức:
A = lx-2l + lx-3l + lx-4l + lx-5l
mk mới lp 6 ko giải đc toán lp 8!!!!Thông cảm nhé