Giải phương trình :
\(\frac{3}{x}+\frac{2x-1}{6}=1-\frac{x}{3}\)
giúp mình với ạ :((
\(\frac{2x^2+1}{8}-\frac{5x-2}{12}=\frac{x^2-1}{4}-\frac{x-3}{6}\)
giải phương trình giúp mình với ạ
\(\Leftrightarrow\frac{6x^2+3}{24}-\frac{10x-4}{24}=\frac{6x^2-6}{24}-\frac{4x-12}{24}\)
\(\Leftrightarrow\frac{6x^2+3-10x+4}{24}=\frac{6x^2-6-4x+12}{24}\)
\(\Leftrightarrow6x^2-10x+7=6x^2-4x+6\)
\(\Leftrightarrow-6x+1=0\)
\(\Rightarrow-6x=-1\)
\(\Leftrightarrow x=\frac{1}{6}\)
Vậy ...
Giải các phương trình sau
1)\(\frac{2x}{x-2}-\frac{5}{x-3}=\frac{5}{x^2-6x+6}\)
2)\(\frac{1}{3x^2-27}+\frac{3}{4}=1+\frac{1}{x-3}\)
mng ơi giúp mình giải hai câu nay với
1) Hình như đề bị sai rồi bạn.
Thông thường pt đã cho sẽ là \(\frac{2x}{x-2}-\frac{5}{x-3}=\frac{5}{x^2-5x+6}\)
Ta thấy \(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)
Nên ĐKXĐ là \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
pt đã cho \(\Leftrightarrow\frac{2x\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{5\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{2x^2-6x-5x+10}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)\(\Rightarrow2x^2-11x+5=0\)(*)
Ta có \(\Delta=\left(-11\right)^2-4.2.5=81>0\)nên pt (*) có 2 nghiệm phân biệt:
\(\orbr{\begin{cases}x_1=\frac{-\left(-11\right)+\sqrt{81}}{2.2}=5\left(nhận\right)\\x_2=\frac{-\left(-11\right)-\sqrt{81}}{2.2}=\frac{1}{2}\left(nhận\right)\end{cases}}\)
Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{1}{2};5\right\}\)
2) Nhận thấy \(3x^2-27=3\left(x^2-9\right)=3\left(x-3\right)\left(x+3\right)\)nên ĐKXĐ ở đây là \(x\ne\pm3\)
pt đã cho \(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}+\frac{3}{4}=1+\frac{1}{x-3}\)
\(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{3\left(x-3\right)\left(x+3\right)}=\frac{1}{4}\)
\(\Leftrightarrow\frac{1-3x-9}{3x^2-27}=\frac{1}{4}\)\(\Rightarrow-12x-32=3x^2-27\)\(\Leftrightarrow3x^2+12x+5=0\)(#)
Nhận thấy \(\Delta'=6^2-3.5=21>0\)
Vậy pt (#) có 2 nghiệm phân biệt \(\orbr{\begin{cases}x_1=\frac{-12+\sqrt{21}}{3}\left(nhận\right)\\x_2=\frac{-12-\sqrt{21}}{3}\left(nhận\right)\end{cases}}\)
Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{-12\pm\sqrt{21}}{3}\right\}\)
giải phương trình sau
\(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\).
.
giúp mình với ạ. mai kt rr
\(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
\(\Rightarrow\left(\frac{x+1}{9}+1\right)+\left(\frac{x+2}{8}+2\right)=\left(\frac{x+3}{7}+1\right)+\left(\frac{x+4}{6}+1\right)\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
\(\text{ma}:\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)
=> x + 0 = 10
=> x = 0 -10
=> x = -10
\(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
Cộng cả 2 vế với 2 ta được :
\(\Leftrightarrow\left(\frac{x+1}{9}+1\right)+\left(\frac{x+2}{8}+1\right)=\left(\frac{x+3}{7}+1\right)+\left(\frac{x+4}{6}+1\right)\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{8}=\frac{x+10}{7}+\frac{x+10}{6}\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
\(\Leftrightarrow\left(x+10\right)\times\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
Mà : \(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)
\(\Rightarrow x+10=0\)
\(\Leftrightarrow x=-10\)
\(\frac{3}{3x^2-4x+1}+\frac{13}{3x^2+2x+1}=\)\(\frac{6}{x}\)
Ai giải được phương trình này giúp mình mình hứa tick đầy đủ ạ
khó quá hà bạn ơi
ĐK \(x\ne0\)
Chia cả 2 vế cho \(\frac{1}{x}\)ta được
\(\frac{3}{3x-4+\frac{1}{x}}+\frac{13}{3x+2+\frac{1}{x}}=6\)
Đặt \(3x+\frac{1}{x}=y\)
\(\Rightarrow\frac{3}{y-4}+\frac{13}{y+2}=6\)
\(\Leftrightarrow16y-46=6\left(y-4\right)\left(y+2\right)\)
Đến đây tự giải nhé (Phá ngoặc rồi ghép cặp lại)
\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
giải phương trình giúp mình với
\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\left(x\ne1\right)\)
\(\Leftrightarrow\frac{1}{x-1}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4}{x^2+x+1}=0\)
\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4x-4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+1+2x^2-5-4x+4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{3x^2-3x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{3x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Rightarrow3x=0\)
=> x=0 (tmđk)
Vậy x=0
Giải bất phương trình sau :
\(x-1-\frac{x-1}{3}\le\frac{2x+3}{2}+\frac{x}{3}-1\)
Mong mọi người giúp ạ !
giải phương trình
a)\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
b)\(\frac{1}{x}-\frac{x+2}{x-2}=\frac{2}{2x-x}\)
nhanh giùm mình ạ
\(ĐKXĐ:x\ne\pm5\)
\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
\(\Rightarrow\frac{3\left(x+5\right)}{4\left(x-5\right)\left(x+5\right)}+\frac{30}{4\left(25-x^2\right)}=\frac{-7\left(x-5\right)}{6\left(x+5\right)\left(x-5\right)}\)
\(\Rightarrow\frac{3x+15}{4\left(x-5\right)\left(x+5\right)}+\frac{-30}{4\left(x-5\right)\left(x+5\right)}=\frac{-7\left(x-5\right)}{6\left(x+5\right)\left(x-5\right)}\)
\(\Rightarrow\frac{3x+15-30}{4\left(x-5\right)\left(x+5\right)}=\frac{-7\left(x-5\right)}{6\left(x+5\right)\left(x-5\right)}\)
\(\Rightarrow\frac{3x-15}{4\left(x-5\right)\left(x+5\right)}=\frac{-7\left(x-5\right)}{6\left(x+5\right)\left(x-5\right)}\)
\(\Rightarrow\frac{3\left(x-5\right)}{4\left(x-5\right)\left(x+5\right)}=\frac{-7\left(x-5\right)}{6\left(x+5\right)\left(x-5\right)}\)
\(\Rightarrow\frac{3}{4\left(x+5\right)}=\frac{-7}{6\left(x+5\right)}\)
\(\Rightarrow18\left(x+5\right)=-28\left(x+5\right)\)
\(\Rightarrow18\left(x+5\right)+28\left(x+5\right)=0\)
\(\Rightarrow46\left(x+5\right)=0\Leftrightarrow x+5=0\Leftrightarrow x=-5\)(ktm)
Vậy pt vô nghiệm
GIẢI CÁC PHƯƠNG TRÌNH SAU:
Giúp mình với, mình đang cần gấp
a)\(\frac{2x}{x+2}+\frac{x+2}{2x}=2\)
b) \(\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}\)
c) \(\frac{1}{x^2-3x+3}+\frac{2}{x^2-3x+4}=\frac{6}{x^2-3x+5}\)
d) \(\frac{x^2-x}{x^2-x+1}-\frac{x^2-x+2}{x^2-x-2}=1\)
a) \(\frac{2x}{x+2}+\frac{x+2}{2x}=2\)
\(\Leftrightarrow4x^2+\left(x+2\right)^2=4x\left(x+2\right)\)
\(\Leftrightarrow5x^2+4x+4=4x^2+8x\)
\(\Leftrightarrow5x^2+4x+4-4x^2-8x=0\)
\(\Leftrightarrow x^2-4x+4=0\)
\(\Leftrightarrow x^2-2.x.2+2^2=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Rightarrow x=2\)
Ai giải hộ mình bài này với!!!!!!!!!!!
Giải phương trình sau:
\(\frac{x^2-2x+2}{x^2-2x+3}+\frac{x^2-2x+1}{x^2-2x+2}=\frac{1}{6}\)
Đặt \(x^{2\:}-2x+2=t\)
Được phương trình: \(\frac{t}{t+1}+\frac{t-1}{t}=\frac{1}{6}\)
Quy đồng và khử mẫu được: \(12t^2-6=t^2+t\)
<=> \(11t^2-t=6\)
r á. đến đó thỳ hk lm đk n~. pn xem lại đề đy na @@