(1+2+3+4+...+100)\(\times\)(18,34-9,68):(\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\))
Giúp mik với!~~~
(1+2+3+4+....+100)\(\times\)(18,34-9,68):(\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{100}\))
Giúp mik với nha!
Cảm ơn nha!
1/100 nhé tính giúp mình với
\((1+\frac{1}{2})\times(1+\frac{1}{3})\times(1+\frac{1}{4})\times...\times(1+\frac{1}{100})\)
\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right).......\left(1+\frac{1}{100}\right)\)
= \(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}......\frac{101}{100}\)
= \(\frac{3.4.5....101}{2.3.4.....100}\)
= \(\frac{101}{2}\)
(1+1/2)(1+1/3)(1+1/4)+...+(1+1/100)
=3/2*4/3*5/4*...*101/100
=101/2
=50,5
BT: Rút gọn: \(A=\frac{\left(1+2+3+...+99+100\right)\times\left(\frac{1}{4}+\frac{1}{6}-\frac{1}{2}\right)\times\left(63\times1,2-21\times3,6+1\right)}{1-2+3-4+5-6+...+99-100}\)
Giúp mình với!!! Tối mai mình học rồi!!! Cảm ơn các bạn nhiều!!!
\(A=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{4}+\frac{1}{6}-\frac{1}{2}\right)\left(63.1,2-21.3,6+1\right)}{1-2+3-4+....+99-100}\)
\(=\frac{\frac{100\left(100+1\right)}{2}\left(\frac{3+2-6}{12}\right)\left[63\left(1,2-1,2\right)+1\right]}{\left(1-2\right)+\left(3-4\right)+....+\left(99-100\right)}\)
\(=\frac{5050.\left(-\frac{1}{12}\right).1}{-1+\left(-1\right)+\left(-1\right)+...+\left(-1\right)}\)
\(=\frac{2525.\left(-\frac{1}{6}\right)}{-50}=\frac{101}{12}\)
TÍNH
\(\frac{\left(1+2+3+...+100\right)\times\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right)\times\left(6,3\times12-21\times3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
Dễ thấy 6,3 . 12 - 21 . 3,6 = 63 . 1,2 - 63 . 1,2 = 0
Do đó biểu thức trên bằng 0
Tính giá trị biểu thức:
\(A=\frac{\frac{16}{10}:\left(1\frac{3}{5}\times \frac{5}{4}\right)}{\frac{64}{100}-\frac{1}{25}}+\frac{\left(\frac{108}{100}-\frac{2}{25}\right):\frac{4}{7}}{\left(5\frac{5}{9}-2\frac{1}{4}\right)\times 2\frac{2}{17}}+\frac{3}{5}\times \frac{1}{2}:\frac{2}{5}\)
Giúp mình giải bài này với!
Cho K=\(\left\{\frac{1}{2^2}-1\right\}\times\left\{\frac{1}{3^2}-1\right\}\times\left\{\frac{1}{4^2}-1\right\}\times...\times\left\{\frac{1}{100^2}-1\right\}\)
So sánh K với \(\frac{-1}{2}\)
\(K=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}...\frac{-9999}{10000}=\left(-1\right)^{99}.\frac{1.3.2.4...99.101}{2.2.3.3.4.4...100.100}=-\frac{1.2...99}{2.3...100}.\frac{3.4...101}{2.3...100}=-\frac{1}{100}.\frac{101}{2}=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)
Chứng tỏ rằng:
a) \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{17}{8^2.9^2}+\frac{19}{9^2.10^2}< 1\) 1
b) \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}< \frac{3}{4}\)
Giúp mik với, sáng mai 8h00 mik cần gấp. Bạn nào nhanh với trình bày đầy đủ mik tick cho ~_~
1.Tính nhanh
a,\(\frac{1}{1\times4}+\frac{1}{4\times7}+............+\frac{1}{97\times100}\)
b,\(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...........\times\frac{99}{100}\)
c,\(\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times...........\times\frac{99}{100}\)
d,\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\left(\frac{1}{4}+1\right)\times............\times\left(\frac{1}{99}+1\right)\)
e,\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times..........\times\left(1-\frac{1}{100}\right)\)
a,Đặt \(A=\frac{1}{1\times4}+\frac{1}{4\times7}+...+\frac{1}{97\times100}\)
\(\Rightarrow3A=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{97\times100}\)
\(\Rightarrow3A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\)
\(\Rightarrow3A=1-\frac{1}{100}=\frac{99}{100}\)
\(\Rightarrow A=\frac{99}{300}\)
b, \(\frac{1}{2}\times\frac{2}{3}\times...\times\frac{99}{100}=\frac{1\times2\times...\times99}{2\times3\times...\times1000}=\frac{1}{100}\)
c, \(\frac{3}{4}\times\frac{8}{9}\times...\times\frac{99}{100}=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times...\times\frac{9.11}{10.10}=\frac{1.2.....9}{2.3.....10}\times\frac{3.4.....11}{2.3.....10}=\frac{1}{10}\times\frac{11}{2}=\frac{11}{20}\) (dấu . là dấu nhân)
Chứng minh rằng:
a,\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b,\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
giúp minh với