Chứng minh rằng: \(39^{1001}+21^{1000}⋮25\)
Cho A = \(\dfrac{1001}{1000^2+1}\)+\(\dfrac{1001}{1000^2+2}\)+\(\dfrac{1001}{1000^2+3}\)+...+\(\dfrac{1001}{1000^2+1000}\)
Chứng minh rằng 1<\(^{A^2}\)<4
Tổng A có 1000 số hạng.
Vậy
Chúc bạn học tốt.
Tổng A có 1000 số hạng
A>(1001/1000^2+1000)*1000=1001*1000/1000*(1000+1)=1
A<(1001/1000^2)*1000=1001/1000=1+1/1000<1
Vậy 1<A<2 nên 1<A^2<4
Cho A= 1001/1000^2+1 + 1001/1000^2+2 + .... + 1001/1000^2+1000.
Chứng minh rằng: 1 < A^2 < 4
Chứng minh rằng 1 < A < 2 :
\(A=\frac{1001}{1000^2+1}+\frac{1001}{1000^2+2}+...+\frac{1001}{1000^2+1000}\)
\(A=\dfrac{1001}{1000^2+1}+\dfrac{1001}{1000^2+2}+\dfrac{1001}{1000^3+3}+.....+\dfrac{1001}{1000^2+100}\)Chứng minh rằng 1<A2<4
Cho A= 1001/10002 + 1 + 1001/10002 + 2 + ... + 1001/10002 + 1000
Chứng minh rằng 1<A2 <4
Chứng minh rằng 1 < A2<4 biết :
\(A=\dfrac{1001}{1000^2+1}+\dfrac{1001}{1000^2+2}+...+\dfrac{1001}{1000^2+1000}\)
S = 21 +23+25+.......+1000+1001=?
CMR:
(210+1)11 chia hết cho 25
391001+211000 chia hết cho 10
\(\left(2^{10}+1\right)^{11}=1025^{11}\)
Mà \(1025⋮25\Rightarrow1025^{11}⋮25\)
Vậy \(\left(2^{10}+1\right)^{11}⋮25\)
b, Ta đã biết: \(9^n\)có chữ số tận cùng là 9 với n lẻ nên \(39^{1001}\)có chữ số tận cùng là 9.
\(21^{1000}\)luôn có chữ số tận cùng là 1.
Do đó: Tổng \(39^{1001}+21^{1000}\)luôn có chữ số tận cùng là 0
Vậy \(39^{1001}+21^{1000}⋮10\)
Chúc bạn học tốt.
Cho A=1001/1000*1000+1 + 1001/1000*1000+2 + ...... + 1001/1000*1000+1000
Chứng minh: 1<A*A<4