chứng tỏ abcabc là bội của 77
Chứng tỏ rằng abcabc là bội của 77
Ta có: \(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.13.77\)
\(\Rightarrow\) \(\overline{abcabc}\) chia hết cho 77
\(\Rightarrow\overline{abcabc}\) là bội của 77(đpcm)
a) Chứng tỏ rằng abcabc là bội của 77
b) chứng tỏ rằng aaa chia hết cho 11
Chứng tỏ abcabc là bội của 77
a) Chứng minh rằng (n+2).(n+9) chia hết cho 49
b) Cho hai số a và b nguyên tố cùng nhau. Chứng minh rằng a.b và a+b của chúng cũng nguyên tố cùng nhau
c) Chứng minh số abcabc( abcabc là một số) là bội của 77
d) Chứng tỏ số aaaaaa là bội số của 3003
Bai 1Tìm số tự nhiên x
x + 3 là ước cuãa 12
Bài 2
a Chứng tỏ rằng abcabc là ước của 77
b chứng tỏ rằng abcabc là ước của 13
Bài 3
Tim x va y
(x - 1)(y + 2) = 3
Bài 4 tim x
2539x là bội của 2 va 5
CHỨNG MINH RẰNG: ABCABC LÀ BỘI CỦA 77
TÌM STN x sao x+15 là bội của x+3
abcabc = abc . 1001 = abc . 13 . 77 chia hết cho 77
=> abcabc chia hết cho 77 (đpcm)
Vì x+15 là bội của x+3
=> x+3+12 chia hết cho x+3
Vì x+3 chia hết cho x+3
=> 12 chia hết cho x+3
=> x+3 thuộc Ư(12)
Mà x là số tự nhiên
=> x > 0
=> x+3 > 3
=> x+3 \(\in\){3; 4; 6; 12}
x+3 | x |
3 | 0 |
4 | 1 |
6 | 3 |
12 | 9 |
KL: x \(\in\){0; 1; 3; 9}
Ta có: 77 = 7 x 11
abcabc = abc x 1001
Vì 1001 \(⋮\)7,11 nên abcabc \(⋮\)7,11
Mà (7;11) = 1 và 7 x 11 = 77 nên abcabc \(⋮\)77
\(\Rightarrow\)Đpcm.
Theo bài ra, ta có: x + 15 \(⋮\)x + 3
\(\Leftrightarrow\)(x+3) + 12 \(⋮\)x + 3
Mà x + 3 \(⋮\)x + 3 nên 12 \(⋮\)x + 3.
\(\Rightarrow\)x + 3 \(\in\)Ư(12)
Mà x \(\in\)N nên x \(\in\){1; 2; 3; 4; 6; 12}
Vậy x \(\in\){1; 2; 3; 4; 6; 12}.
Chứng tỏ rằng abcabc là bội của 7,11 và 13
( abcabc có gạch trên đầu)
ta có: abcabc = abc.1000+ abc
=> abcabc = abc ( 1000 + 1 )
=> abcabc = abc . 1001
vì 1001 chia hết cho 7, 11 và 13
=> abc . 1001 chia hết cho 7, 11 và 13
hay abcabc chia hết cho 7, 11 và 13 \(\rightarrow\) ĐPCM
Chú ý: abcabc và abc có gạch trên đầu
chứng tỏ rằng số abcabc là bội của 7 11 13
chứng tỏ số abcabc là bội của 7,11 và 13