Chứng minh rằng trong 5 số tự nhiên bất kì bao giờ cũng có thể chọn ra 2 số mà hiệu của chúng là:4
Chứng minh rằng trong 5 số tự nhiên bất kì bao giờ cũng có thể chọn ra 2 số mà hiệu của chúng chia hết cho 4
Dùng nguyên lí Dirichle bạn ạ
Số dư khi chia chia cho 4 chỉ có thể là một trong các số 0 ; 1 ; 2 ;3
Nên trong 5 số bất kì đó phải tồn tại 2 số có cùng số dư khi chia cho 4
=> hiệu 2 số này chia hết cho 4
Chứng minh rằng: Trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11
Theo Nguyên lí Đi-rich-lê thì trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11 nên =>trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11
Đem 12 số tự nhiên trên chia cho 11 thì nhận đc 12 số dư. Mà 1 số tự nhiên khi chia cho 11 sẽ nhận đc 1 trong 11 khả năng dư[0 đến 10].
Ta có 12:11=1[dư 1]
Theo nguyên lí điricle sẽ tồn tại ít nhất
1+1=2[ số dư bằng nhau]
Nghĩa là tồn tại ít nhất 2 số tự nhiên khi chia 11 có cùng số dư. Suy ra hiệu 2 số đó chia hết cho 11
Vậy bài toán đã được chứng minh
Chứng minh rằng: Trong 12 số tự nhiên bất kì bao giờ cũng chọn ra được hai số mà hiệu của chúng chia hết cho 11
Đem 12 stn cha cho 11 thì nhận đc 12 số dư .Mà 1 stn khi chia cho 11 se nhận đc trog 11 khả năng dư [ 0 đến 10 ]
ta có :
12/11=1 (dư 1)
Theo nguyên lí dircle sẽ tồn tại ít nhất 1+1=2 (số dư = nhau )
Nghĩa là sẽ có 2 stn khi chia cho 11 có cùng số dư
=> Hiệu 2 số đó chia hết cho 11
Chả bjt có đúng k .Nhưng mik nghĩ là 98%
Cho 7 số tự nhiên bất kì chứng minh rằng bao giờ cũng có thể chọn ra 2 số mà hiệu chia hết cho 6
ta thấy 1 số tự nhiên khi chia cho 6 có 6 khả năng dư:0,1,2,3,4,5,
có 6kn dư mà có 7 số=>theo nguyên lí direchlet có ít nhất hai số có cùng số dư
khi đó hiệu chúng sẽ chia hết cho6
Ta thay 1 so tu nhien khi chia cho 6 co kha nang du 0;1;2;3;4;5
Co 6 kn du ma co 7 so => theo nguyen li direchlet co it nhat 2 so co cung so du
Khi do hieu cua chung se chia het cho 6
chứng minh rằng trong 7 số tự nhiên bất kì tùy chọn bao giờ cũng có 4 số mà tổng của chúng chia hết cho 4
cho 5 số tự nhiên bất kì chứng minh rằng :trong 5 số ấy có thể chọn ra 2 số mà hiệu bình phương của chúng chia hết cho 7
Cho 7 số tự nhiên bất kì. Chứng minh bao giờ cũng có thể cohonj ra 2 số mà hiệu của chúng chia hết cho 6
Khi chia 1 số tự nhiên bất kì cho 6, số dư có thể một trong 6 số 0,1,2,3,4,5
Theo nguyên lí Dirichlet thì trong 7 số tự nhiên bất kì sẽ có cùng số dư khi chia cho 6
=>Hiệu của chúng chia hết cho 6
Cho 5 số tự nhiên bất kì. Chứng minh rằng trong 5 số ấy ta có thể chọn ra 2 số mà hiệu các bình phương của chúng chia hết cho 7
Cho 5 số tự nhiên bất kì. Chứng minh rằng trong 5 số ấy ta có thể chọn ra 2 số mà hiệu các bình phương của chúng chia hết cho 7