Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đoàn Đức Huy
Xem chi tiết
NGUYEN NGOC DAT
26 tháng 12 2017 lúc 20:38

 Gọi d là Ước chung lớn nhất của 2n + 1 và 6n + 5

=> ( 6n + 5 ) - ( 2n + 1 ) chia hết cho d

=> ( 6n + 5 ) - 3( 2n + 1 ) chia hết cho d

=> ( 6n + 5 ) - ( 6n + 3 ) chia hết cho d

=> 2 chia hết cho d

Vậy ước chung lớn nhất của 2n + 1 và 6n + 5 là 2 .

nguyễn hà trâm
27 tháng 12 2017 lúc 11:27

Gọi a là ƯCLN(2n+1, 6n+5)

ta có: 2n+1 chia hết cho a và 6n+5 chia hết cho a

        3.(2n+1) chia hết cho a và (6n + 5) chia hết cho a

         6n+3 chia hết cho a và 6n+5 chia hết cho a

       [(6n+5) - (6n+3)] chia hết cho a

       [6n+5 - 6n -3] chia hết cho a

        2 chia hết cho a suy ra a  = 2 hoặc  1

Vậy 6n+5 và 2n+1 là hai số nguyên tố chung

Edogawa-conan
13 tháng 3 2023 lúc 21:02

 Gọi d là Ước chung lớn nhất của 2n + 1 và 6n + 5 (dϵN')

=> ( 6n + 5 ) - ( 2n + 1 ) chia hết cho d

=> ( 6n + 5 ) - 3( 2n + 1 ) chia hết cho d

=> ( 6n + 5 ) - ( 6n + 3 ) chia hết cho d

  2 chia hết cho a suy ra a  = 2 hoặc  1

Vậy 6n+5 và 2n+1 là hai số nguyên tố chung

Nguyễn Như Quỳnh
Xem chi tiết
Huỳnh Ngọc Hân
31 tháng 7 2018 lúc 15:35

Giả sử 2n+1 và 6n+5 ko phải là 2 số nguyên tố cùng nhau thì:

cho d là ƯCLN của chúng và d>1

ta có:2n+1chia hết cho d,vậy 6n+3 cũng chia hết cho d

suy ra:6n+5-(6n+3) chia hết cho d

vậy 2 chia hết cho d

mà các ƯC của 2 là :2 và 1

mà cả 2 số đã cho đều là số lẻ,nên d phải bằng 1

nhưng như vậy thì trái với giả thuyết mà chúng ta đặt ra ban đầu

vậy 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau

Nguyễn Thanh Nhàn
Xem chi tiết
Nguyễn Anh Quân
7 tháng 11 2017 lúc 15:28

Gọi ƯCLN của 2n+5 và 6n+13 là d(d thuộc N sao)

=> 2n+5 và 6n+13 đều chia hết cho d

=> 3.(2n+5) và 6n+13 đểu chia hết cho d

=> 6n+15 và 6n+13 đều chia hết cho d => 6n+15-(6n+13) chia hết cho d hay 2 chia hết cho d (1)

Mà 2n chẵn nên 2n+5 lẻ => d lẻ (1)=> d =1 (vì d thuộc N sao)

=> 2n+5 và 6n+13 là 2 số nguyên tố cùng nhau (ĐPCM)

King Math_Công Tôn Bảo N...
Xem chi tiết
van anh ta
29 tháng 7 2016 lúc 19:42

Gọi (2n + 1,6n + 5) = d (d \(\in\)N)

=> 2n + 1 chia hết cho d và 6n + 5 chia hết cho d

=> 3 . (2n + 1) chia hết cho d và 6n + 5 chia hết cho d

=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d

=> 6n + 5 - (6n + 3) chia hết cho d

hay 2 chia hết cho d => d \(\in\)Ư(2) => d \(\in\){-2;-1;1;2}

Mà d là lớn nhất nên d = 2

Ta thấy 6n + 5 ko chia hết cho 2 và 2n + 1 ko chia hết cho 2

=> (2n + 1,6n + 5) = 1

Vậy 2n + 1 và 6n + 5 là 2 số nguyên tố cùng nhau với mọi n thuộc N

Ủng hộ mk nha !!! ^_^

Sarah
29 tháng 7 2016 lúc 19:44

Gọi d là Ưcln của 2n + 1 và 6n + 5

Khi đó : 2n + 1 chia hết cho d và 6n + 5 chia hết cho d

<=> 3.(2n + 1) chia hết cho d và 6n + 5 chia hết cho d

=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d

=> (6n + 5) - (6n + 3) chia hết cho d => 2 chia hết cho d

Mà ưc của 2 là 1 => d = 1

VậY (đpcm_)

o0o I am a studious pers...
29 tháng 7 2016 lúc 19:49

Giả sử UCLN của 2n + 1 và 6n + 5 là : H

Ta có : 2n + 1 chia hết cho H và 6n + 5 chia hết cho H

=> 3( 2n + 1 ) chia hết cho H và 6n + 5 => chia hết cho H

=> 6n + 3 chia hết cho H và 6n + 5 => chia hết cho H

Vậy nên ( 6n + 5 ) - ( 6n + 3 ) chia hết cho H => H chia hết cho 2

Ư ( 2 ) là 1 => H = 1

Vậy .............

SSSSSky
Xem chi tiết
Mistty
Xem chi tiết
ST
23 tháng 12 2015 lúc 4:53

trong chtt có 

tick nha

Trần Trương Quỳnh Hoa
23 tháng 12 2015 lúc 5:17

tham khảo câu hỏi tương tự nha bạn

Kaito Kid
23 tháng 12 2015 lúc 5:27

2n + 2 = 4n

6n + 5 = 11n

=> ƯCLN(4n, 11n) = 1

<=> ƯCLN(2n + 2, 6n + 5) = 1

Vì 2, 5 là số nguyên tố mà chỉ duy nhất 6 là hợp số nên 6 + 5 = 11 là số nguyên tố

=> ƯCLN(2n + 2, 6n + 5) = 1

=> ĐPCM

Đỗ Quyên
Xem chi tiết
Vũ Thùy Chi
Xem chi tiết
Ngọc Lan
7 tháng 4 2020 lúc 8:31

Gọi (2n+1, 6n+5)=d  (d là số tự nhiên khác 0)

=> 2n+1 chia hết cho d và 6n+5 chia hết cho d

=> (2n+1)-(6n+5) chia hết cho d

=> (6n+3)-(6n+5) chia hết cho d

=> -2 chia hết cho d

=> d thuộc Ư(-2)={1;2}

Mà 6n+5 lẻ

=> d=1

=> 2n+1 và 6n+5 nguyên tố cùng nhau

Vậy ___

Học tốt!

Khách vãng lai đã xóa
Dương Thị Huyền Trang
Xem chi tiết