Rút gọn:
\(\frac{x^{63}+x^{62}+...+x^2+x+1}{x^{31}+x^{30}+x^{29}+...+x^2+x+1}\)
Rút gọn biểu thức\(B=\frac{x^{39} x^{36} x^{33} ... x^3 1}{x^{40} x^{38} x^{36} ... x^2 1}\)\(A=\frac{x^{95} x^{94} x^{93} ... x 1}{x^{31} x^{30} x^{29} ... x 1}\)
Rút gọn A=\(\frac{x^{95}+x^{94}+x^{93}+....+x+1}{x^{31}+x^{30}+x^{29}+...+x+1}\)
Rút gọn biểu thức
\(B=\frac{x^{39}+x^{36}+x^{33}+...+x^3+1}{x^{40}+x^{38}+x^{36}+...+x^2+1}\)
\(A=\frac{x^{95}+x^{94}+x^{93}+...+x+1}{x^{31}+x^{30}+x^{29}+...+x+1}\)
Rút gọn biểu thức\(B=\frac{x^{39} x^{36} x^{33} ... x^3 1}{x^{40} x^{38} x^{36} ... x^2 1}\)\(A=\frac{x^{95} x^{94} x^{93} ... x 1}{x^{31} x^{30} x^{29} ... x 1}\)
Rút gọn.
\(B=\dfrac{x^{39}x^{36}x^{33}...x^31}{x^{40}x^{38}x^{36}...x^21}=\dfrac{x^{\left(39+36+33+...+3\right)}}{x^{\left(40+38+36+...+2\right)}}\)
ta có: \(39+36+33+...+3=\dfrac{\left(39+3\right)\left(\dfrac{39-3}{3}+1\right)}{2}=273\)
\(40+38+36+....+2=\dfrac{\left(40+2\right)\left(\dfrac{40-2}{2}+1\right)}{2}=420\)
=> \(B=\dfrac{x^{273}}{x^{420}}=\dfrac{1}{x^{147}}\)
Tương tự như B => \(A=\dfrac{x^{4560}}{x^{496}}=x^{4064}\)
Ta có:
\(B=\dfrac{x^{\left(39+36+33+....+3\right)}}{x^{\left(40+38+36+....+2\right)}}\)
\(39+36+33+....+3=\dfrac{\left(39+3\right)\left(\dfrac{39-3}{3}+1\right)}{2}=273\)
\(40+38+36+....+2=\dfrac{\left(40+2\right)\left(\dfrac{40-2}{2}+1\right)}{2}=420\)
\(\Rightarrow B=\dfrac{x^{273}}{x^{420}}=\dfrac{1}{x^{147}}\)
tương tự => \(A=\dfrac{x^{4560}}{x^{496}}=x^{4064}\)
Rút gọn phân số
31 x 32 - 62 / 30 x 31
Thường thì phân số lớp 4 là tính ra luôn nhỉ?
\(\frac{31x32-62}{30x31}=\frac{932}{930}=\frac{466}{465}\)
b1 :
5 , 31 + 62 x 20 + 31 x 59
6, -19 + 38 x 22 + 31 x 59
7, 54 ( -11 - 32 ) - 32 (89 - 54 )
8,2018 x 31 - 2018 ( -19 ) + 2018 x 50
9, 16 x 34 - (-16 ) x 21 + 55 x 16
10 , 29 x 63 - 63 x 31 - 63 x 98
ai làm hết mkcho 10 tick trong 1 buổi tối
5, 31+1240++1829=3100
6. -19+836+1829=2646
7. 54.43-32.35=2322-1120=1202
8 2018(31+16+50)=2018.97=195746
9. 16(34-21+55)=16.68=1088
10. 63(29-31-98)=63.(-100)=-6300
Tìm x biết
\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}......\frac{30}{62}.\frac{31}{62}=2^x\)
\(\frac{1}{4}.\frac{2}{6}............\frac{31}{64}=2^x\)
\(\Rightarrow\frac{1.2........31}{2.2.2.3...........2.31.64}=2^x\)
\(\Rightarrow\frac{1}{2^{30}.2^4}=2^x\)
\(\Rightarrow\frac{1}{2^{34}}=2^x\)
\(\Rightarrow x=-34\)
Tìm x
a, \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
b,\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot\frac{4}{10}\cdot\frac{5}{12}.....\frac{30}{62}\cdot\frac{31}{64}=2^x\)
a)\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\Leftrightarrow x\left(x-1\right)^{x+2}\left(x-2\right)=0\)
Do đó \(x\in\left\{0;1;2\right\}\)
b)
\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot...\cdot\frac{31}{64}=2^x\Leftrightarrow\frac{1\cdot2\cdot3\cdot...\cdot31}{4\cdot6\cdot8\cdot...\cdot64}=2^x\Leftrightarrow\frac{31!}{\left(2\cdot2\right)\cdot\left(2\cdot3\right)\cdot\left(2\cdot4\right)\cdot...\cdot\left(2\cdot31\right)\cdot64}=2^x\)
\(\frac{31!}{2^{30}\cdot31!\cdot2^6}=2^x\Leftrightarrow\frac{1}{2^{36}}=2^x\Leftrightarrow2^{-36}=2^x\Rightarrow x=-36\)
Tìm x biết:\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}...\frac{30}{62}.\frac{31}{64}=2^x\)
\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot......\cdot\frac{31}{64}=2^x\)
\(\Leftrightarrow\frac{1\cdot2\cdot3\cdot....\cdot31}{4\cdot6\cdot8\cdot....\cdot64}=2^x\)
\(\Leftrightarrow\frac{1\cdot2\cdot3\cdot....\cdot31}{\left(2\cdot2\right)\cdot\left(3\cdot2\right)\cdot\left(4\cdot2\right)\cdot.....\cdot\left(2\cdot32\right)}=2^x\)
\(\Leftrightarrow\frac{1\cdot2\cdot3\cdot...\cdot31}{\left(2\cdot2\cdot2\cdot....\cdot2\right)\left(1\cdot2\cdot3\cdot.....\cdot31\right)\cdot32}=2^x\)
\(\Leftrightarrow\frac{1}{2^{31}.2^5}=2^x\)
\(\Leftrightarrow\frac{1}{2^{36}}=2^x\)
\(\Rightarrow x=-36\)