cho x là 1 số tự nhiên CMR: a=x^2+2x+104 là số chính phương
tìm hai số tự nhiên x;y thoả mãn (2x-y)(x+y+1)=x^2 CMR (2x-y) là số chính phương
Gọi \(ƯC\left(2x-y;x+y+1\right)=d\left(d\in N\right)\)
\(\Rightarrow2x-y⋮d,x+y+1⋮d\)
\(\Rightarrow\left(2x-y\right)\left(x+y+1\right)⋮d^2\Rightarrow x^2⋮d^2\Rightarrow x⋮d\) (1)
Mặt khác, \(2x-y+x+y+1⋮d\Rightarrow3x+1⋮d\) (2)
Từ (1) và (2) ta được: \(3x+1-3x⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy 2x - y và x + y + 1 là 2 số nguyên tố cùng nhau.
Mà \(\left(2x-y\right)\left(x+y+1\right)\) là số chính phương
Nên 2x - y và x + y + 1 là 2 số chính phương.
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a^2 - b, b^2 - c, c^2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x^2 + y^2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n^2 - 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a^2 + 3b; b^2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a^2 + b^2 + c^2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a2 - b, b2 - c, c2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x2 + y2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n2- 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a2 + 3b; b2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a2 + b2 + c2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
6. Cho các số nguyên (a -b)2 = a + 8b -16. CMR a là số chính phương.
7. Tìm các số tự nhiên m, n thỏa mãn 4m - 2m+1 = n2 + n + 6
1. Cho số tự nhiên gồm 2n chữ số 1 ( n \(\in\) N ) , số tự nhiên B gồm n chữ số 2.
CMR hiệu A-B là số chính phương
2. CMR với x,y là số nguyên thì : A = (x+y)(x+2y)(x+3y)(x+4y)+y4 là số chính phương
Please, help me
3 like for the first one
1. Cho số tự nhiên gồm 2n chữ số 1 ( n \(\in\) N ) , số tự nhiên B gồm n chữ số 2.
CMR hiệu A-B là số chính phương
2. CMR với x,y là số nguyên thì : A = (x+y)(x+2y)(x+3y)(x+4y)+y4 là số chính phương
Please, help me
3 like for the first one
Ta có A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4
= (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y4
Đặt x2 + 5xy + 5y2 = t ( t Z) thì
A = (t - y2)( t + y2) + y4 = t2 –y4 + y4 = t2 = (x2 + 5xy + 5y2)2
V ì x, y, z Z nên x2 Z, 5xy Z, 5y2 Z x2 + 5xy + 5y2 Z
Vậy A là số chính phương.
cho đa thức A=(x+2)(x+4)(x+6)(x+8)+16
CMR vs mọi sô tự nhiên x thì A luôn là 1 số chính phương
A = (x+2)(x+4)(x+6)(x+8)+16 =(x+2)(x+8)(x+4)(x+6)+16 =(x2+10x+16)(x2+10x+24)+16
đặt t=x2+10x+20
ta được: (t-4)(t+4) =t2-16 thay lại biểu thức A ta đc:
A = t2 -16 +16 =t2 =(x2+10x+20)2
Vậy A là số CP
\(A=\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(\Leftrightarrow A=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
Đặt \(y=x^2+10+20\)
\(\Rightarrow A=\left(y-4\right)\left(y+4\right)+16\)
\(\Leftrightarrow A=y^2-16+16\)
\(\Leftrightarrow A=y^2=\left(x^2+10x+20\right)^{20}\)
Vậy với mọi STN x thì A luôn là 1 số chính phương
a) CMR : nếu x là số tự nhiên lẻ thì giá trị biểu thức :
A=x^2+4x-5 là bội số của 8
b) tìm các số tự nhiên x thỏa mãn x^2+65 là số chính phương
\(a\text{)}\)
\(A=x^2+4x-5=\left(x-1\right)\left(x+5\right)\)
\(\text{Nếu }x\text{ là số tự nhiên lẻ thì }x=2n+1\text{ (}n\in N\text{ )}\)
\(\text{Khi đó: }A=\left(2n+1-1\right)\left(2n+1+5\right)=2n.\left(2n+6\right)=4n\left(n+3\right)\)
+ \(n\text{ chẵn thì }n\left(n+3\right)\text{ chẵn }\Rightarrow n\left(n+3\right)\text{chia hết cho 2 }\Rightarrow4n\left(n+3\right)\text{ chia hết cho 8}\)
+ \(n\text{ lẻ thì }n+3\text{ chẵn }\Rightarrow n\left(n+3\right)\text{ chia hết cho 2 }\Rightarrow4n\left(n+3\right)\text{ chia hết cho 8}\)
Ta có đpcm.
\(\text{b)}\)
\(x^2+65=y^2\)\(\Rightarrow y^2-x^2=65\Leftrightarrow\left(y+x\right)\left(y-x\right)=65.1=13.5\)
\(\text{Do }x,y\text{ nguyên nên }y+x;y-x\text{ nguyên}\)
\(\text{Mà }y+x>y-x>0\text{ nên ta có:}\)
\(\text{+TH1: }y+x=65\text{ và }y-x=1\Leftrightarrow x=32;y=33\)
\(\text{+TH2:}y+x=13\text{ và }y-x=5\Leftrightarrow x=4;y=9\)
\(\text{Vậy }x\in\left\{4;32\right\}\text{ thì }x^2+65\text{ là số chính phương.}\)
tìm x,y là số tự nhiên biết (x+y+1)^2 -2x + 2y là số chính phương
Tìm số tự nhiên x sao cho: \(x^2+2x+8\)là 1 số chính phương
Đặt x2 + 2x + 8 = y2
<=> (x2 + 2x + 1) + 7 = y2
<=> (x + 1)2 - y2 = - 7
<=> (x + 1 - y)(x + 1 + y) = - 7 = - 1.7 = - 7.1
Với x + 1 - y = - 1 thì x + 1 + y = 7
<=> x - y = - 2 và x + y = 6
=> x = ( 6 - 2 ) : 2 = 2
Với x + 1 - y = - 7 thì x + 1 + y = 1
<=> x - y = - 8 và x + y = 0
=> x = ( 0 - 8 ) : 2 = - 4 ( loại )
Vậy x = 2 thì x2 + 2x + 8 là số CP