chứng tỏ rằng a, b thuộc Z sao cho a chia hết cho b đồng thời b chia hết cho a thì a= b hoặc a= -b
chứng tỏ rằng nếu có a; b thuộc z sao cho a chia hết cho và b chia hết cho a thì a=b hoặc a= -b
chứng tỏ rằng nếu có a,b thuộc z sao cho a chia hết cho b và b chỉa hết cho a thì a=b hoặc a= -b
cho a,b và hai số nguyên khác 0.Khi đó nếu a chia hết cho b và b chia hết cho a thì a = b hoặc a = -b
thật vậy do a chia hết cho b nên a = bq với q thuộc Z . lại do b chia hết cho a nên b = ap với p thuộc Z .
Suy ra a = bq = (ap)q = a(pq), tức là pq = 1 (vì a khác 0). Vậy p = q = 1 hoặc p = q = -1 .
Chứng tỏ a = b hoặc a = -b.
Cho A = 2x^2yz ; B = xy^2z. Chứng tỏ rằng:
Nếu x, y thuộc Z và 2x + y chia hết cho m (m thuộc Z*) thì A + B chia hết cho m.
Ta có :
\(A+B=2x^2yz+xy^2z\)
\(=xyz\left(2x+y\right)\)
Vì \(2x+y⋮m\) nên \(xyz\left(2x+y\right)⋮m\)
Do đó : \(A+B⋮m\) (đpcm)
Bài 1: Chứng minh rằng: Nếu 6x+ 11y chia hết cho 31 thì x + 7y chia hết cho 31; x , y thuộc Z
Bài 2: Cho a, b thuộc Z ( a khác 0, b khác 0)
Chứng minh rằng: Nếu a chia hết cho b và b chia hết cho a thì a = b, a = -b
Bài 3: Tìm n thuộc Z sao cho:
a, n2 + 3n - 13 chia hết cho n + 3
d, n2 + 3 chia hết cho n - 1
HELP ME............................
Bài 1:
Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y
Vì 6x+11y chia hết cho 31, 31y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 => x+7y chia hết cho 31
Bài 3:
a,n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 E Ư(13)={1;-1;13;-13}
=>n E {-2;-4;10;-16}
d,n2+3 chia hết cho n-1
=>n2-n+n-1+4 chia hết cho n-1
=>n(n-1)+(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
Cho A = ax^2 +bx+c trong đó a,b,c thuộc Z , A chia hết cho 3 với x thuộc Z . Chứng tỏ rằng a,b,c chia hết cho
+ x = 0 => c chia hết cho 3
+x= 1=> a +b chia hết cho 3 (2)
+ x = -1=> a-b chia hết cho 3 (3)
(2)(3) => a chia hết cho 3; b chia hế cho 3
Chứng tỏ rằng a, b thuộc N*; nếu a chia hết cho b và b chia hết cho a thì a=b.
a chia hết cho b ; b chia hết cho a nên a = bm ; b = an (m,n thuộc N* vì a,b thuộc N*)
a = bm = anm => nm = 1 => n = m = 1 => a = b
Bài 5: Chứng minh rằng:
a, a thuộc Z thì a( a+1 )( a+2 ) chia 3
b, Nếu ( a-b ) chia hết cho 4 thì ( a - 7b ) chia hết cho 4
c, Nếu a chia hết cho 4; b thuộc Z thì ( -2a - 8b ) chia hết cho 8
d, Nếu a,b thuộc Z; ( a + 2b + 3c ) chia hết cho 5 thì ( a + 3b + 7c ) chia hết cho 5
chờ a,b thuộc Z chứng tỏ rằng nếu 2a+7b chia hết cho 15 thì a+11b chia hết cho 15 và ngược lại