Tìm 1 số chính phương có dạng abcd . Biết ab - cd = 1 ,tìm số chính phương đó
một số chính phương có dạng abcd. biết ab-cd=1. hãy tìm số abcd
một số chính phương có dạng abcd bt ab -cd =1 hãy tìm số abcd
Tìm số chính phương abcd biết ab-cd=1
Có bao nhiêu số có 2 chữ số sao cho tich của chúng là 1 số chính phương
Tìm số chính phương có 4 chữ số biết mỗi chữ số giảm 1 đơn vị thì đc số mới cũng là số chính phương
(abcd) là kí hiệu số có 4 chữ số abcd.
từ: (ab)-(cd)=1 => (ab) =1+(cd)
giả sử n^2 = (abcd) = 100(ab) + (cd) = 100( 1+(cd)) + (cd) = 101(cd) +100
đk : 31<n<100
=> 101(cd) = n^2 -100 = (n+10)(n-10)
vì n< 100 => n-10 < 90 và 101 là số nguyên tố nên: n+10 = 101 => n =91
thử lại: số chính phương 91^2 = 8281 thỏa đk 82-81=1
trong tương tự đó
Nguyễn Tuấn Tài : là người học dốt nên phải đi copy
Tìm số chính phương abcd biết ab-cd=1
Có bao nhiêu số có 2 chữ số sao cho tich của chúng là 1 số chính phương
Tìm số chính phương có 4 chữ số biết mỗi chữ số giảm 1 đơn vị thì đc số mới cũng là số chính phương
Câu 1:Tìm số chính phương abcd biết ab-cd=1
Câu 2:Có bao nhiêu số có 2 chữ số sao cho tích của chúng là 1 số chính phương
Câu 3:Tìm số chính phương có 4 chữ số biết mỗi chữ số giảm 1 đơn vị thì đc số mới cũng là số chính phương
Tìm số chính phương abcd có 4 chữ số biết : ab - cd = 1
(abcd) là kí hiệu số có 4 chữ số abcd.
từ: (ab)-(cd)=1 => (ab) =1+(cd)
giả sử n^2 = (abcd) = 100(ab) + (cd) = 100( 1+(cd)) + (cd) = 101(cd) +100
đk : 31<n<100
=> 101(cd) = n^2 -100 = (n+10)(n-10)
vì n< 100 => n-10 < 90 và 101 là số nguyên tố nên: n+10 = 101 => n =91
thử lại: số chính phương 91^2 = 8281 thỏa đk 82-81=1
(abcd) là kí hiệu số có 4 chữ số abcd.
từ: (ab)-(cd)=1 => (ab) =1+(cd)
giả sử n^2 = (abcd) = 100(ab) + (cd) = 100( 1+(cd)) + (cd) = 101(cd) +100
đk : 31 101(cd) = n^2 -100
= (n+10)(n-10) vì n< 100 => n-10 < 90 và 101 là số nguyên tố nên:
n+10 = 101 => n =91
thử lại: số chính phương 91^2 = 8281
thỏa đk 82-81=1
Tìm số chính phương abcd, biết số ab-cd=1
(abcd) là kí hiệu số có 4 chữ số abcd.
từ: (ab)-(cd)=1 => (ab) =1+(cd)
giả sử n^2 = (abcd) = 100(ab) + (cd) = 100( 1+(cd)) + (cd) = 101(cd) +100
đk : 31<n<100
=> 101(cd) = n^2 -100 = (n+10)(n-10)
vì n< 100 => n-10 < 90 và 101 là số nguyên tố nên: n+10 = 101 => n =91
thử lại: số chính phương 91^2 = 8281 thỏa đk 82-81=1
tick đi bạn
Bạn ơi s 101 là snt thì suy ra n+10=101 vậy
1 số chính phương có dạng abcd. Biết ab - cd =1. Tìm số abcd
Ta có : ab - cd = 1
=> ab = 1 + cd
Giả sử n2 = abcd = 100ab + cd = 100. ( 1 + cd +cd ) = 101cd + 100
Điều kiện : 31< n < 100
=> 101cd = n2 -100 = ( n + 10 ).( n - 10 )
Vì n < 100
=> n - 10 < 90 và 101 là số nguyên tố nên n + 10 = 101
=> n = 101 - 10 = 91
Ta có : n = 91 nên n2 = 912 = 8281
Vậy số chính phương cần tìm có dạng abcd thỏa mãn yêu cầu đề bài là 8281
cho mk hỏi ngu tí tại sao 101 là số nguyên tố mà suy ra đc n + 10 = 101
Một số chính phương có dạng abcd.Biết ab -cd=1.Tìm số abcd