Tính giá trị của biểu thức:
A= \(\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+...+\frac{4}{2014\cdot2015}\)
Tính: A =\(\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+...+\frac{4}{2014\cdot2015}\)
Vậy \(A=\frac{8056}{2015}\)
Bạn tham khảo: Câu hỏi của chipchip - Toán lớp 6 - Học toán với OnlineMath
\(A=\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+...+\frac{4}{2014\cdot2015}\)
\(\frac{1}{4}A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2014\cdot2015}\)
\(\frac{1}{4}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2014}-\frac{1}{2015}\)
\(\frac{1}{4}A=1-\frac{1}{2015}\)
\(\frac{1}{4}A=\frac{2014}{2015}\)
\(A=\frac{2014}{2015}:\frac{1}{4}=\frac{2014}{2015}\cdot4=\frac{8056}{2015}\)
Tính giá trị biểu thức một cách hợp lý
C=\(2\frac{1}{2016}\cdot\frac{1}{2015}-\frac{1}{672}\cdot3\frac{2014}{2015}-\frac{4}{2014\cdot2015}+\frac{4}{672}\)
Muốn cho số có hai chữ số giống nhau và chia hết cho 2 thì số đó phải là một trong các số 22, 44, 66, 88. Bây giờ ta tìm trong những số này số mà chia cho 5 thì dư 3.
Đó là số 88.
Xem thêm tại: http://loigiaihay.com/bai-99-trang-39-sgk-toan-6-tap-1-c41a3896.html#ixzz4xczZ4dOb
tính nhanh : B =\(\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+.......+\frac{4}{29\cdot30}\)
\(B=4.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{29.30}\right)\)
\(B=4.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{29}-\frac{1}{30}\right)\)
\(B=4.\left(1-\frac{1}{30}\right)\)
\(B=4.\frac{29}{30}\)
\(B=\frac{58}{15}\)
\(B=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{29}-\frac{1}{30}\right)\)
\(=4\left(1-\frac{1}{30}\right)\)
\(=4.\frac{29}{30}=\frac{58}{15}\)
Vậy B= \(\frac{58}{15}\)
\(A=\frac{1\cdot2}{2\cdot2}\cdot\frac{2\cdot3}{3\cdot3}\cdot\frac{3\cdot4}{4\cdot4}\cdot\frac{4\cdot5}{5\cdot5}\cdot.................\cdot\frac{2012\cdot2013}{2013\cdot2013}\)với
\(B=\frac{2012\cdot2013-2012\cdot2012}{2012\cdot2011+2012\cdot2}\)
A=\(\frac{1}{2}\).\(\frac{2}{3}\)....\(\frac{2012}{2013}\)=\(\frac{1}{2013}\)
B=\(\frac{2012}{2012.2013}\)=\(\frac{1}{2013}\)
vậy A=B
\(A=\frac{1.2}{2.2}.\frac{2.3}{3.3}.\frac{3.4}{4.4}.\frac{4.5}{5.5}.....\frac{2012.2013}{2013.2013}=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}....\frac{2012}{2013}=\frac{1.2.3.4.5....2012}{2.3.4.5....2013}=\frac{1}{2013}\)
\(B=\frac{2012.2013-2012.2012}{2012.2011+2012.2}=\frac{2012.\left(2013-2012\right)}{2012.\left(2011+2\right)}=\frac{2012}{2012.2013}=\frac{1}{2013}\)
\(\Rightarrow A=B\)
1) \(2x-\frac{4}{3}-\frac{4}{15}-\frac{4}{35}-\frac{4}{63}-\frac{4}{99}=\frac{15}{17}\)
2)\(\frac{10}{1\cdot2\cdot3}+\frac{10}{2\cdot3\cdot4}+\frac{10}{3\cdot4\cdot5}+.....+\frac{10}{100\cdot101\cdot102}\)
2, \(\frac{10}{1.2.3}+\frac{10}{2.3.4}+\frac{10}{3.4.5}+....+\frac{10}{100.101.102}\)
\(=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{102-100}{100.101.102}\)
\(=\frac{10}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{100.101}-\frac{1}{101.102}\right)\)
\(=\frac{10}{2}.\left(\frac{1}{1.2}-\frac{1}{101.102}\right)\)
\(=\frac{10}{2}.\frac{2575}{5151}\)
\(=2,499514657\)
1.
a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2017\cdot1018}\)
b) \(\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+....+\frac{2}{2017\cdot2018}+\frac{2}{2018\cdot2019}\)
c) \(\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+......+\frac{4}{1999\cdot2000}\)
********Lưu ý :
1) Các dấu chấm ở phân số là dấu nhân ạ..!!!
2) Trình bày rõ ràng giúp mk với ạ..!!!
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-..........-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2018}{2018}-\frac{1}{2018}=\frac{2017}{2018}\)
b) \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+..........+\frac{2}{2017.2018}+\frac{2}{2018.2019}\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{2017.2018}+\frac{1}{2018.2019}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.........-\frac{1}{2018}+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=2\left(1-\frac{1}{2019}\right)\)
\(=2\left(\frac{2019}{2019}-\frac{1}{2019}\right)\)
\(=2.\frac{2018}{2019}\)
\(=\frac{4036}{2019}\)
Phần c tương tự nha
a) \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + .......+ \(\frac{1}{2017.2018}\)
= 1 - \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + .......+ \(\frac{1}{2017}\) - \(\frac{1}{2018}\)
= 1 - \(\frac{1}{2018}\) = \(\frac{2017}{2018}\)
câu a) mik sửa đề một tí ko biết có đúng ko
câu b , c tương tự nhưng cần lấy tử ra chung
a)\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2017\times2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
b)nhóm 2 ra ngoài rồi làm như câu a
c)nhóm 4 ra rồi làm như câu a
Rút gọn:
a,\(A=\frac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}\)
b,\(B=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2014\cdot2016}\right)\)
Tính: C=\(2\frac{1}{2016}\cdot\frac{1}{2015}-\frac{1}{672}\cdot3\frac{2014}{2015}-\frac{4}{2014\cdot2015}+\frac{4}{672}\)
Tính nhanh : \(4-\frac{2}{1\cdot2}-\frac{2}{2\cdot3}-\frac{3}{3\cdot4}-.........-\frac{2}{99\cdot1000}\)
#)Giải :
Đặt \(A=4-\frac{2}{1.2}-\frac{2}{2.3}-\frac{2}{3.4}-...-\frac{2}{99.100}\)
\(A=4-\left(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\right)\)
\(A=4-2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(A=4-2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=4-2\left(1-\frac{1}{100}\right)\)
\(A=4-2\times\frac{99}{100}\)
\(A=4-\frac{99}{50}\)
\(A=\frac{101}{50}\)