Cho tứ giác ABCD, các điểm M,N,P,Q lần lượt là trung điểm của các cạnh AB,BC,CD,DA ; nối MN,NP,PQ,QM.Hãy chứng minh diện tích tứ giác MNPQ bằng 1/2 diện tích tứ giác ABCD
Cho tứ giác ABCD. Các điểm M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Nối MN, PQ, PQ, QM. Hãy chứng tỏ diện tích tứ giác MNPQ bằng ½ diện tích tứ giác ABCD.
Cho tứ giác ABCD. M,N,P,Q lần lượt là trung điểm các cạnh AB, CD, BC, DA. C/m: MP + NQ bé hơn hoặc bằng nửa chu vi của tứ giác
Cho tứ giác ABCD. M,N,P,Q lần lượt là trung điểm các cạnh AB, CD, BC, DA. C/m: MP + NQ bé hơn hoặc bằng nửa chu vi của tứ giác
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Vecto M N → không cùng phương với vecto nào?
A. P Q →
B. A P →
C. C A →
D. Q P →
*Xét tam giác ABC có M; N là trung điểm của AB, BC nên MN là đường trung bình của tam giác.
⇒ M N / / A C ; M N = 1 2 A C ( 1 )
* Xét tam giác ADC có P; Q là trung điểm của CD, DA nên PQ là đường trung bình của tam giác.
⇒ P Q / / A C ; P Q = 1 2 A C ( 2 )
* Từ (1) (2) suy ra PQ// MN; PQ = MN.
Suy ra, vecto M N → không cùng phương với vecto A P →
Đáp án B
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Gọi O là giao điểm các đường chéo của tứ giác MNPQ, trung điểm các đoạn thẳng AC, BD tương ứng là I, J. Khẳng định nào sau đây đúng?
A. O I → = O J →
B. O A → = O C →
C. O B → = O D →
D. O I → = - O J →
*Xét tam giác ABC có M; N là trung điểm của AB, BC nên MN là đường trung bình của tam giác.
⇒ M N / / A C ; M N = 1 2 A C ( 1 )
* Xét tam giác ADC có P; Q là trung điểm của CD, DA nên PQ là đường trung bình của tam giác.
⇒ P Q / / A C ; P Q = 1 2 A C ( 2 )
* Từ (1) (2) suy ra PQ// MN; PQ = MN. Do đó, tứ giác MNPQ là hình bình hành.
* Mà O là giao điểm của hình bình hành MNPQ nên O là trung điểm MP
* Xét tam giác ABC có MI là đường trung bình nên: M I / / B C ; M I = 1 2 B C ( 3 )
* Xét tam giác BCD có PJ là đường trung bình của các tam giác nên: P J / / B C ; P J = 1 2 B C ( 4 )
Từ (3) ( 4) suy ra ; tứ giác MIPJ là hình bình hành. Mà O là trung điểm MP nên điểm O là trung điểm của đoạn thẳng IJ. Từ đó ta có O I → = - O J →
Đáp án D
Cho hình thang ABCD bốn điểm M N P Q lần lượt là trung điểm các cạnh AB BC CD DA biết diện tứ giác MNPQ là 115 cm2
*Ta có S 1= S QAM =1/2 S QAB(2 tam giác cùng chiều cao hạ từ đỉnh Q và đáy AM = 1/2 AB)
và S BQA =1/2 S BDA (2 tam giác cùng chiều cao hạ từ đỉnh B và đáy AQ = 1/2 AD)
=>S 1=1/4 S ABD
*Tương tự:
S 2 = 1/4 S ABC
S 3 = 1/4 S BCD
S 4 = 1/4 S ACD
=> S 1+ S 2+ S 3+ S 4 = 1/4 S (ABD + ABC + BCD + ACD) = 1/4 S (ABCD x 2) = 1/2 S ABCD
=> S MNPQ = S ABCD - 1/2 S ABCD = 1/2 S ABCD.
Vậy S MNPQ là : 115 : 2 = 57,5 ( cm2 )
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DA và I, K là trung điểm các đường chéo AC, BD. Chứng minh :
a) Các tứ giác MNPQ, INKQ là hình bình hành
Giúp mình với nhá, mai mình phải nộp bài rồi!!!
Cho hình thang ABCD. Bốn điểm M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DA. Biết diện tích tứ giác MNPQ là . Diện tích hình thang ABCD là
230 nha nhớ tích cho mk đấy vì mk trả lời đầu tiên