Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Tuyết Như
Xem chi tiết
EXO L BLINK ARMY
24 tháng 8 2018 lúc 16:40

ko bik

Hùng Đào
Xem chi tiết
Trần Nguyễn Bảo Quyên
4 tháng 11 2016 lúc 16:16

Gọi hai số đó là : \(x\)\(y\)

Theo đề bài , ta có :

\(35.\left(x+y\right)=210\left(x-y\right)=12\left(xy\right)\)

\(\Rightarrow35.\left(x+y\right)=210.\left(x-y\right)\) \(\left(1\right)\)

\(210.\left(x-y\right)=12\left(xy\right)\) \(\left(2\right)\)

Từ \(\left(1\right)\Rightarrow35x+35y=210x-210y\)

 

\(\Rightarrow35y+210y=210x-35x\)

\(\Rightarrow245y=175x\)

\(\Rightarrow x=\frac{\left(245y\right)}{175}=\frac{\left(7y\right)}{5}\) \(\left(3\right)\)

Thay vào \(\left(2\right)\) , ta được :

\(210.\left(x-y\right)=12\left(xy\right)\)

\(\Rightarrow210.\left[\frac{\left(7y\right)}{5-y}\right]=12.\left[\frac{7y}{5y}\right]\)

\(\Rightarrow210.\left[\frac{\left(2y\right)}{5}\right]=\left[\frac{\left(84y\right)}{5}\right].y\)

\(\Rightarrow\frac{\left(420y\right)}{5}=\frac{84y^2}{5}\)

\(\Rightarrow\left[\frac{\left(420y\right)}{5}\right]-\left[\frac{84y^2}{5}\right]=0\)

\(\Rightarrow\frac{\left[84.\left(5-y\right)\right]}{5}=0\)

\(\Rightarrow y=0\) ( vô lí )

\(\Rightarrow5-y=0\)

\(\Rightarrow y=5\)

Thay vào \(\left(3\right)\) , ta có :

\(x=\frac{\left(7y\right)}{5}=\frac{\left(7.5\right)}{5}=\frac{37}{5}=7\)

Vậy \(x=7;y=5\)

Nguyễn Việt Khánh Hà
2 tháng 12 2017 lúc 17:17

Gọi 2 số dương cần tìm là a và b. Giả sử a > b

Ta có:
- tổng của chúng là (a + b)
- hiệu của chúng là (a - b)
- tích của chúng là ab


biết tổng,hiệu và tích của chúng tỉ lệ nghịch với 35, 210, và 12 ,

tức là : 35(a + b) = 210(a - b) = 12ab

hay rõ hơn là
(a + b) : (a - b) = 210 : 35 => 35(a + b) = 210(a - b) => (a - b) = (a + b)/6 (1)
và (a - b) : ab = 12 : 210 => 12ab = 210(a - b) => (a - b) = 2ab/35 (2)

Từ (1) ta có:
(a - b)/1 = (a + b)/6 = [(a - b) + (a + b)] / (1+ 6) = 2a/7 (3)

Từ (1) ta lại có:
(a - b)/1 = (a + b)/6 = [(a + b) - (a - b)] / (6 - 1) = 2b/5 (4)

Từ (2) & (3)
=> 2ab/35 = 2a/7 => b = 5

Từ (2) & (4)
=> 2ab/35 = 2b/5 => a = 7

Đáp số : a = 7 & b = 5

Trần Công Thái Tuấn
1 tháng 5 2024 lúc 20:53

-Gọi hai số cần tìm là  a,b

_Do tổng hiệu và tích ccuar chúng tỉ lệ nghịch với 35,210,12

=>35.(a+b)=210.(a-b)=12.(a.b)

=>35a+35b=210a-210b

=>35a-210a=-35b-210b

=>-175a=-245b   =>a/b=-245/175=7/5

vậy a=7;b=5 

nguyễn thị thùy dương
Xem chi tiết
Wang Jum Kai
Xem chi tiết
Nguyễn Thị Thùy Giang
31 tháng 12 2015 lúc 16:40

Gọi 2 số phải tìm là a và b

Theo bài ra ta có: 30.(a+b)=120.(a-b)=a.b.16          =>15.(a+b)=60.(a-b)=8.a.b

Ta có:15.a+15.b=60.a-60.b  =>75.b=45.a        =>a/5=b/3       =>a=(5/3).b

Thay a=(5/3).b ta được         15.[(5/3).b+b)]=8.(5/3).b.b

                                           =>40.b=(40/3).b2

                                           =>b=(1/3).b2   =>b=3

=>a=3.(5/3)=5

Vạy a=5;b=3

           

nguyễn thị thùy dương
Xem chi tiết
nguyễn nam dũng
Xem chi tiết
Trang Lê
Xem chi tiết
Nguyễn Duy Hưng
Xem chi tiết
Pham Van Hung
23 tháng 11 2018 lúc 21:52

Gọi 2 số dương cần tìm là a và b

Ta có: \(\left(a+b\right).30=\left(a-b\right).120=16.ab\)

\(\left(a+b\right).30=\left(a-b\right).120\Rightarrow\frac{a+b}{a-b}=\frac{120}{30}=4\)

\(\Rightarrow a+b=4a-4b\Rightarrow b+4b=4a-a\Rightarrow5b=3a\Rightarrow a=\frac{5}{3}b\)

\(\left(a+b\right).30=16ab\)

\(\Rightarrow\left(\frac{5}{3}b+b\right).30=16.\frac{5}{3}b.b\)

\(\Rightarrow80b=\frac{80}{3}b^2\)

\(\Rightarrow80b\left(1-\frac{1}{3}b\right)=0\Rightarrow1-\frac{1}{3}b=0\left(b>0\right)\Rightarrow b=3\)

Tìm được \(a=\frac{5}{3}b=\frac{5}{3}.3=5\)

Vậy 2 số cần tìm là 5 và 3.

Nguyễn Tiến Đạt
Xem chi tiết
ST
20 tháng 1 2018 lúc 17:02

Theo đề bài ta có: \(35\left(x+y\right)=210\left(x-y\right)=12xy\)

\(\Rightarrow\frac{35\left(x+y\right)}{420}=\frac{210\left(x-y\right)}{420}=\frac{12xy}{420}\)

\(\Rightarrow\frac{x+y}{12}=\frac{x-y}{2}=\frac{xy}{35}\left(1\right)\)

Áp dụng TCDTSBN ta có:

\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)+\left(x-y\right)}{12+2}=\frac{2x}{14}=\frac{x}{7}\left(2\right)\) 

\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)-\left(x-y\right)}{12-2}=\frac{2y}{10}=\frac{y}{5}\left(3\right)\)

Từ (1) và (2) => \(\frac{xy}{35}=\frac{x}{7}\Rightarrow\frac{xy}{35}=\frac{xy}{7y}\Rightarrow y=5\)

Từ (1) và (3) => \(\frac{xy}{35}=\frac{y}{5}\Rightarrow\frac{xy}{35}=\frac{xy}{5x}\Rightarrow x=7\)