Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thai ba trang an
Xem chi tiết
Nguyễn tuấn nghĩa
Xem chi tiết
Nguyễn Anh Quân
24 tháng 11 2017 lúc 20:51

Có : (x+2016)^2 = x^2+4032x+2016^2 = (x^2-4032x+2016^2) + 8064x = (x-2016)^2 + 8064x >= 8064x

=> Q = x/(x+2016)^2 <= x/8064x = 1/8064

Dấu "=" xảy ra <=> x-2016 = 0 <=> x = 2016

Vậy Max Q = 1/8064 <=> x = 2016

k mk nha

minhduc
24 tháng 11 2017 lúc 20:52

Ta có : \(Q=\frac{x}{\left(x+2016\right)^2}\)

Để phân số trên có GTLN thì mẫu số phải bé nhất , tử số phải lớn nhất .

Mà thử số là x ( ko thay đổi )

=> \(\left(x+2016\right)^2\)bé nhất . (   x+2016 khác 0 )

=> (x+2016)2=1

Vậy GTLN của Q là -2015 ( tại x=-2015 )

kudo shinichi
Xem chi tiết
Kiệt Nguyễn
25 tháng 1 2021 lúc 11:15

Theo giả thiết, ta có: \(\frac{x}{1+x}+\frac{2y}{1+y}=1\Leftrightarrow\frac{2y}{1+y}=1-\frac{x}{1+x}=\frac{1}{x+1}\)\(\Leftrightarrow2y\left(x+1\right)=y+1\Leftrightarrow2xy^2=-y^2+y=-\left(y-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

\(\Rightarrow xy^2\le\frac{1}{8}\)

Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)

Khách vãng lai đã xóa
Xmaf
Xem chi tiết
Nguyễn Việt Hoàng
31 tháng 3 2019 lúc 9:06

a) Ta có : \(|x-7|\ge0\)

\(\Rightarrow A=124-5|x-7|\ge124\left(1\right)\)

Mà \(A=0\)

\(\Leftrightarrow5|x-7|=0\)

\(\Leftrightarrow x=7\left(2\right)\)

Từ (1) và (2) => max A = 124

b) 

+) Với \(x\ge\frac{2}{3}\)thì \(x-\frac{2}{3}\ge0\)

\(\Rightarrow|x-\frac{2}{3}|=x-\frac{2}{3}\)

Thay vào ta tính được \(B=\frac{7}{6}\)( bạn tự thay vào tính nha )

Còn lại bạn tự làm nha .

Cuối cùng ra \(_{max}B=\frac{7}{6}\)

Trần Minh Ánh
Xem chi tiết
Nguyễn Việt Hoàng
18 tháng 8 2020 lúc 15:41

a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)

\(N=\frac{\left(x+2\right)^2}{x}.\left(1-\frac{x^2}{x+2}\right)-\frac{x^2+6x+4}{x}\)

\(N=\frac{\left(x+2\right)^2}{x}.\frac{x+2-x^2}{x+2}-\frac{x^2+6x+4}{x}\)

\(N=\frac{\left(x+2\right)\left(x+2-x^2\right)-x^2-6x-4}{x}\)

\(N=\frac{x^2+2x-x^3+2x+4-2x^2-x^2-6x-4}{x}\)

\(N=\frac{-x^3-2x^2-2x}{x}\)

\(N=\frac{-x\left(x^2+2x+2\right)}{x}\)

\(N=-\left(x^2+2x+2\right)\)

b) \(N=-\left(x^2+2x+2\right)\)

\(\Leftrightarrow N=-\left(x^2+2x+1+1\right)\)

\(\Leftrightarrow N=-\left(x+1\right)^2-1\le-1\)

Max N = -1 \(\Leftrightarrow x=-1\)

Vậy .......................

Khách vãng lai đã xóa
Lê Cao Phong
Xem chi tiết
Pham Van Hung
1 tháng 12 2018 lúc 11:58

a, ĐK: \(\hept{\begin{cases}x+2\ne0\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x\ne-2\\x\ne0\end{cases}}\)

b, \(B=\left(1-\frac{x^2}{x+2}\right).\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)

\(=\frac{-x^2+x+2}{x+2}.\frac{\left(x+2\right)^2}{x}-\frac{x^2+6x+4}{x}\)

\(=\frac{\left(-x^2+x+2\right)\left(x+2\right)-\left(x^2+6x+4\right)}{x}\)

\(=\frac{-x^3-2x^2+x^2+2x+2x+4-\left(x^2+6x+4\right)}{x}\)

\(=\frac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)

c, x = -3 thỏa mãn ĐKXĐ của B nên với x = -3 thì 

\(B=-\left(-3\right)^2-2.\left(-3\right)-2=-9+6-2=-5\)

d, \(B=-x^2-2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\le-1\forall x\)

Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)

Vậy GTLN của B là - 1 khi x = -1

Lê Cao Phong
2 tháng 12 2018 lúc 11:32

Thanks bạn ;)

leminhkhoa
Xem chi tiết
Minh Lê Quang Khánh
16 tháng 7 2017 lúc 10:37

đề chưa rõ lắm. mình không bik là \(\frac{1}{2\left(x-1\right)^2}+3\)hay là \(\frac{1}{2}\left(x-1\right)^2+3\)

leminhkhoa
16 tháng 7 2017 lúc 10:59

cái đầu tiên bạn ghi đó

Nhật Hòa
Xem chi tiết
Mạnh Nguyễn Tuấn
Xem chi tiết