tìm \(n\inℤ\)để \(\left(n+5\right)⋮\left(n-8\right)\)
Tìm \(n\inℤ\)để \(\left(n^4+1\right)⋮\left(3n^3-2\right)\)
Nếu n =3k, ta có n^4 +1 = (3n^3-2)k +2k +1chia hết cho 2n^3-2
Suy ra 2k+1 chia hết cho 3n^3-2, không có nghiệm.
Nếu n=3k+1, ta có n^4 +1 = (3n^3-2)k + n^3 + 2k +1chia hết cho 2n^3-2
Suy ra n=1
Tương tự cho TH n=3k+2...
Tìm \(n\inℤ\), biết :
a, \(\left(n+5\right)^2-3\left(n+5\right)+2\)là bội của n + 5
b, \(\left(n+7\right)⋮n\)
c, \(\left(n+3\right)⋮n-2\)
Tìm \(n\inℤ\)biết :
\(\left(n+5\right)^2-3\left(n+5\right)+2\)là bội của n + 5
AI nhank mk tick
Ta có: (n + 5)2 - 3(n + 5) + 2 \(\in\)B(n + 5)
<=> (n + 5)(n + 5 - 3) + 2 \(⋮\)n + 5
<=> 2 \(⋮\)n + 5
<=> n + 5 \(\in\)Ư(2) = {1; -1; 2; -2}
Lập bảng :
n + 5 | 1 | -1 | 2 | -2 |
n | -4 | -6 | -3 | -7 |
Vậy ...
a) Tìm số tự nhiên \(n\)để \(\left(n+3\right)\).\(\left(n+1\right)\)là số nguyên tố.
b) Cho \(A=\) \(\frac{n+3}{n-5}\)\(\left(n\inℤ\right)\)
Tìm điều kiện của số nguyên n để \(A\)là phân số chưa tối giản.
a, (n+1)(n+3) là SNT <=> 1 ts = 1; ts còn lại là SNT.
TH1: n+1=1 => n=0 => n+3=3 (t/m)
TH2: n+3=1 => n=-2 => n+1=-1 (không t/m)
=> n=0.
b, A không tối giản => ƯCLN(n+3;n-5) >1
=> ƯCLN(8;n-5) >1 => n-5 chẵn => n lẻ.
Ko có số tự nhiên n thõa mãn điều kiện. k mik nhé nếu muốn hỏi j thêm về câu này thì cứ nhắn tin riêng cho mik
Bài 20: Chứng minh với mọi số nguyên n thì
d) \(\left(n+7\right)^2-\left(n-5\right)^2\)chia hết cho 24
e) \(\left(7n+5\right)^2-25\)chia hết cho 7 với \(n\inℤ\)
f) \(\left(n+6\right)^2-\left(n-6\right)^2\)chia hết cho 24 với \(n\inℤ\)
g) \(n^3-n\)chia hết cho 6 với mọi \(n\inℤ\)
d) ( n + 7 )2 - ( n - 5 )2
= n2 + 14n + 49 - n2 + 10n - 25
= 24n + 24
= 24 ( n + 1 ) chia hết cho 24 ( đpcm )
e)
( 7n + 5 )2 - 25
= ( 7n + 5 )2 - 52
= ( 7n + 5 - 5 ) ( 7n + 5 + 5 )
= 7n ( 7n + 10 ) chia hết cho 7 ( đpcm )
f) ( n + 6 )2 - ( n - 6 )2
= ( n + 6 + n - 6 ) ( n + 6 - n + 6 )
= 2n . 12
= 24n chia hết cho 24 ( đpcm )
1/ Tìm x\(\inℤ\)
a) 12 - x = 1 - ( - 5 )
b) \(|x+4|=12\)
2/ Tìm \(n\inℤ,biết:\)
\(n-5⋮n+2\)
3/ Tính nhanh ( bài nào có thể tính nhanh thì tính còn ko có thì thui nha )
a) \(4.\left(-5^{ }\right)^2+2.\left(-12\right)\)
b)\(\left(-47\right).\left(65-34\right)+\left(-65\right).\left(-47-34\right)\)
giúp mk nha ai đúng và nhanh mk tặng 3 tick
1/a) 12 - x= 1-(-5)
12 - x = 6
x= 12-6
x=6
b)| x+4|= 12
x+4 = \(\pm\)12
*x+4=12
x=8
*x+4= -12
x=-16
2/Tìm n
\(n-5⋮n+2\)
=> \(n+2-7⋮n+2\)
mà \(n+2⋮n+2\)
=> 7\(⋮\)n+2
=> n+2 \(\varepsilon\)Ư(7)= {1;-1;7;-7}
n+2 | 1 | -1 | 7 | -7 |
n | -1 | -3 | 5 | -9 |
3/a)4.(-5)2 + 2.(-12)
= 2.2.(-5)2 + 2.(-12)
=2[2.25.(-12)]
=2.(-600)
=-1200
A=\(\frac{N+4}{N-1}\left(n\inℤ\right)\)
B=\(\frac{2n+4}{n-1}\left(n\inℤ\right)\)
\(A=\frac{n+4}{n-1}=\frac{n-1+5}{n-1}=1+\frac{5}{n-1}.\)
\(\Rightarrow A\in Z\Leftrightarrow\frac{5}{n-1}\in Z\Rightarrow n-1\inƯ_5\)
Mà \(Ư_5=\left\{\pm1;\pm5\right\}\)\(\Rightarrow...\)
\(B=\frac{2n+4}{n-1}=\frac{2n-2+6}{n-1}=2+\frac{6}{n-1}\)
\(\Rightarrow B\in Z\Leftrightarrow\frac{6}{n-1}\in Z\Rightarrow n-1\inƯ_6\)
Mà \(Ư_6=\left\{\pm1;\pm2;\pm3\right\}\Rightarrow...\)
1) Cho \(P\left(x\right),Q\left(x\right)\inℤ\left[x\right]\). Giả sử với mọi số nguyên dương \(n\) thì \(P\left(n\right),Q\left(n\right)>0\) đồng thời tồn tại \(d\) nguyên dương sao cho \(gcd\left(P\left(n\right),Q\left(n\right)\right)\le d\) với mọi \(n\) nguyên dương. Biết \(2^{Q\left(n\right)}-1|3^{P\left(n\right)}-1\) với mọi \(n\) nguyên dương. Chứng minh rằng \(Q\left(x\right)\) là đa thức hằng.
2) Cho \(p\) là số nguyên tố sao cho \(q=2p+1\) cũng là số nguyên tố. Chứng minh rằng \(q\) có bội mà tổng các chữ số không quá 3.
Tìm n để phân số M=\(\frac{3n+1}{5n+4}\left(n\inℤ\right)\)là phân số tối giản