Tìm giá trị nhỏ nhất của biểu thức A=\(\frac{2015}{\left|x\right|-3}\) với x là số nguyên
Tìm giá trị nhỏ nhất của biểu thức A=\(\frac{2015}{\left|x\right|-3}\) với x là số nguyên
A= \(\frac{2015}{\left|x\right|-3}\)
Ta có \(\left|x\right|\ge0\forall x\)
\(\Rightarrow\left|x\right|-3\ge-3\forall x\)
\(\Rightarrow\frac{2015}{\left|x\right|-3}\le\frac{2015}{-3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x\right|=0\)
\(\Leftrightarrow x=0\)
Vậy MaxA = \(\frac{-2015}{3}\) \(\Leftrightarrow x=0\)
@@ Học tốt @@
## Chiyuki Fujito
Để A có giá trị nhỏ nhất thì 2015/|x|-3 có giá trị nhỏ nhất => |x|-3 có giá trị nhỏ nhất => |x| có giá trị nhỏ nhất mà x lá số nguyên nên |x|=0 => x=0 . Vậy A có GTNN là 2015/0-3 = 2015/-3 khi và chỉ khi x=0
1. Tìm giá trị nhỏ nhất của các biểu thức
a) C= \(x^2+3\left|y-2\right|-1\)
b)D= x+|x|
2. Tìm giá trị lớn nhất của các biểu thức.
a) A= \(5-\left|2x-1\right|\)
b)B= \(\frac{1}{\left|x-2\right|+3}\)
3. Tìm giá trị lớn nhất của biểu thức \(C=\frac{x+2}{\left|x\right|}\)với x là số nguyên.
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Cho biểu thức \(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}\)
a, Chứng tỏ rằng với mọi x, biểu thức C luôn có giá trị là 1 số dương.
v, Tìm tất cả các số nguyên x để C có giá trị là 1 số nguyên
c, Với giá trị nào của x thì biểu thức C có giá trị nhỏ nhất. Tìm giá trị nhỏ đó
\(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}\)
a, Ta thấy \(\left(x-1\right)^2\ge0\forall x\Rightarrow\hept{\begin{cases}2\left(x-1\right)^2+1\ge1>0\\\left(x-1\right)^2+2\ge2>0\end{cases}}\)
\(\Rightarrow C>0\forall x\)(đpcm)
b, \(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)
\(C\in Z\Leftrightarrow2-\frac{3}{\left(x-1\right)^2+2}\in Z\)
\(\Leftrightarrow\frac{3}{\left(x-1\right)^2+2}\in Z\)Lại do \(\left(x-1\right)^2+2\ge2\)
\(\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(3\right)=\left\{3\right\}\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1\right\}\)
\(\Leftrightarrow x\in\left\{0\right\}\)
....
c, \(C=2-\frac{3}{\left(x-1\right)^2+2}\)
Ta có : \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{3}{\left(x-1\right)^2+2}\le\frac{3}{2}\)
\(\Rightarrow C=2-\frac{3}{\left(x-1\right)^2+2}\ge2-\frac{3}{2}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)
:33
Tìm giá trị nhỏ nhất của biểu thức A = $\left|x-2\right|+\left|2x-2013\right|$ với x là số nguyên
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48
mình nha
1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).
2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:
\(M=\left(a-b\right)\left(a+b-1\right)\).
3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).
1)
i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.
ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).
2)
i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .
ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).
Tìm giá trị nhỏ nhất của biểu thức A=2015/(IxI-3) với x là số nguyên
cho biểu thức sau :
a) Rút gọn A
b) Tìm các giá trị nguyên của x để A có giá trị là số nguyên lớn nhất và số nguyên nhỏ nhất
A= \(\frac{1}{3}.\left(\frac{-65}{x-7}+\frac{26}{x-7}\right)\)
a) Cho biểu thức P=\(\frac{a}{a^2-a+1}\)
Tìm a là số tự nhiên để biểu thức P có giá trị là số nguyên.
b)Cho x<4.Tìm giá trị nhỏ nhất của biểu thức A=\(^{x^2\left(2-x\right)}\)
GIÚP MÌNH VỚI Ạ ! MAI MÌNH CẦN GẤP RỒI!
cho 2 số dương x, y. Hãy tìm giá trị nhỏ nhất của biểu thức \(B=\frac{2015\left(x+y\right)^2}{x^2+y^2}+\frac{2016\left(x+y\right)^2}{xy}\)