Tim gtnn cua 2x/(x-1)^2 khi x>1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tim gtnn cua \(\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)
từ đề = |x+1| + |x-1| (1)
+/ nếu x >1 thì x-1>0 và x+1>0
suy ra (1)=2x mà x>1 nên (1) > 2
+/ nếu -1>=x>=1 thì x-1<=0 và x+1>=0
suy ra (1)=2
+/ nếu x<1 thì x-1 và x+1 bé hơn hoặc bằng 2
suy ra (1)=-2x
mà x<1 nên (1)>2
vậy MIN=2 <=> -1<=x<=1
\(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)
\(=\left|x+1\right| +\left|1-x\right|\ge\left|x+1+1-x\right|=2\)
Vậy giá trị nhỏ nhất bằng 2, với \(-1\le x\le1\)
tim GTNN cua C=2x+1/x^2
cho x 0,y 0, x y 2012. a, tim GTLN cua A 2x 2 8xy 2y 2 x 2 2xy y 2 b, tim GTNN cua B 1 2012 x 2 1 2012 y 2
Voi x>=-2.Tim GTNN cua bieu thuc N=x^2+2x+1/(x+2)
Tim gtnn cua bieu thuc A=(2x^2+4x-1)/(x^2+1)
voi x > 1/2
tim gtnn cua D=x/3 + 5/2x-1
cho x>0,y>0, x+y=2012.
a, tim GTLN cua A= (2x^2+8xy+2y^2)/ (x^2+2xy+y^2)
b, tim GTNN cua B=(1+(2012/x))^2+(1+(2012/y))^2
ap dung bdt co si tim gtnn cua bieu thuc y=x/3 +5/2x+1;x>1/2
Tim gtnn cua da thuc
Cau 1 M bằng x mũ 2 trừ 8x cộng 5
Cau 2 F bang 2x mũ 2 cộng 6x trừ 4
Tim gtln cua da thúc
Cau 1 7 - x - x mũ 2
Cau 2 ( 1- 2x ) nhân (x-3)
Phần GTNN:
Câu 1:
Ta thấy: \(M=x^2-8x+5=x^2-8x+16-11=\left(x-4\right)^2-11\)
Do \(\left(x-4\right)^2\ge0\) ( mọi x )
\(\Rightarrow\left(x-4\right)^2-11\ge-11\) ( mọi x )
=> GTNN của đa thức \(M=\left(x-4\right)^2-11\) bằng -11 khi và chỉ khi:
\(\left(x-4\right)^2=0\)
\(\Rightarrow x-4=0\)
\(\Rightarrow x=4\)
Vậy GTNN của đa thức \(M=x^2-8x+5\) bằng -11 khi và chỉ khi x = 4.
Câu 2:
Ta thấy: \(F=2x^2+6x-4=2\left(x^2+3x-2\right)=2\left(x^2+3x+\frac{9}{4}-\frac{17}{4}\right)=2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\)
Do \(\left(x+\frac{3}{2}\right)^2\ge0\) ( mọi x )
\(\Rightarrow\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\ge\frac{-17}{4}\) ( mọi x )
\(\Rightarrow2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\ge\frac{-17}{2}\) ( mọi x )
=> GTNN của đa thức \(F=2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\) bằng \(\frac{-17}{2}\) khi và chỉ khi:
\(\left(x+\frac{3}{2}\right)^2-\frac{17}{4}=\frac{-17}{4}\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2=0\)
\(\Rightarrow x+\frac{3}{2}=0\)
\(\Rightarrow x=\frac{-3}{2}\)
Vậy GTNN của đa thức \(F=2x^2+6x-4\) bằng \(\frac{-17}{4}\) khi và chỉ khi \(x=\frac{-3}{2}\).