Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
đanh khoa
Xem chi tiết
Phan Le Nhat Minh
22 tháng 10 2017 lúc 17:31

từ đề = |x+1| + |x-1| (1)

+/ nếu x >1 thì x-1>0 và x+1>0 

suy ra (1)=2x mà x>1 nên (1) > 2 

+/ nếu -1>=x>=1 thì x-1<=0 và x+1>=0 

suy ra (1)=2

+/ nếu x<1 thì x-1 và x+1 bé hơn hoặc bằng 2

suy ra (1)=-2x

mà x<1 nên (1)>2

 vậy MIN=2 <=> -1<=x<=1

pham thi thu trang
22 tháng 10 2017 lúc 17:35

\(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)

\(=\left|x+1\right| +\left|1-x\right|\ge\left|x+1+1-x\right|=2\)

Vậy giá trị nhỏ nhất bằng 2, với \(-1\le x\le1\)

Trương Tuấn Hưng
Xem chi tiết
Nguyễn Hoài Đức CTVVIP
Xem chi tiết
Phuong Dang
Xem chi tiết
Nguyen ha quyen
Xem chi tiết
Bùi Võ Duy Vũ
Xem chi tiết
Nguyễn Anh Tú
Xem chi tiết
Nguyễn Minh Tuấn
Xem chi tiết
Trần minh tam 0801204
Xem chi tiết
Vũ Quang Vinh
4 tháng 8 2017 lúc 14:28

Phần GTNN:
Câu 1:
Ta thấy: \(M=x^2-8x+5=x^2-8x+16-11=\left(x-4\right)^2-11\)
Do \(\left(x-4\right)^2\ge0\) ( mọi x )
\(\Rightarrow\left(x-4\right)^2-11\ge-11\) ( mọi x )
=> GTNN của đa thức \(M=\left(x-4\right)^2-11\) bằng -11 khi và chỉ khi:
\(\left(x-4\right)^2=0\)
\(\Rightarrow x-4=0\)
\(\Rightarrow x=4\)
Vậy GTNN của đa thức \(M=x^2-8x+5\) bằng -11 khi và chỉ khi x = 4.

Câu 2:
Ta thấy: \(F=2x^2+6x-4=2\left(x^2+3x-2\right)=2\left(x^2+3x+\frac{9}{4}-\frac{17}{4}\right)=2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\)
Do \(\left(x+\frac{3}{2}\right)^2\ge0\) ( mọi x )
\(\Rightarrow\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\ge\frac{-17}{4}\) ( mọi x )
\(\Rightarrow2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\ge\frac{-17}{2}\) ( mọi x )
=> GTNN của đa thức \(F=2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\) bằng \(\frac{-17}{2}\) khi và chỉ khi:
\(\left(x+\frac{3}{2}\right)^2-\frac{17}{4}=\frac{-17}{4}\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2=0\)
\(\Rightarrow x+\frac{3}{2}=0\)
\(\Rightarrow x=\frac{-3}{2}\)
Vậy GTNN của đa thức \(F=2x^2+6x-4\) bằng \(\frac{-17}{4}\) khi và chỉ khi \(x=\frac{-3}{2}\).