Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyển hoàng giang
Xem chi tiết
Nguyên
23 tháng 7 2015 lúc 9:23

a)\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(A=1-\frac{1}{2^{50}}

Nguyễn Quang Minh
22 tháng 12 2016 lúc 21:10

Bạn Detective_conan giải đúng đấy!

Phùng Lê Nguyên Vũ 1
Xem chi tiết
Hà Hải Đăng
Xem chi tiết
tran van nam
Xem chi tiết
Kalluto Zoldyck
27 tháng 4 2016 lúc 10:46

Gọi tổng trên là A

A = 1/22+1/33+.....+1/502

A = 1/2.2 + 1/3.3 +.....+ 1/50.50

A < 1/1.2 + 1/2.3 +.....+ 1/49.50

A < 1 - 1/2 + 1/2 - 1/3 +.......+ 1/49 - 1/50

A < 1 - 1/50

A < 49/50 < 1
=> A < 1

Ai k mk mk k lại 

Đào Minh Nhật
27 tháng 4 2016 lúc 10:51

A=(1/2)*(1/2)+(1/3)*(1/3)+...+(1/50)*(1/50) = 1/(2*2)+1/(3*3)+1/(4*4)+...+1/(50*50) < 1/(1*2)+1/(2*3)+...+1/(49*50)

 Mà 1/(1*2)+1/(2*3)+...+1/(49*50) = 1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50 =1-1/50 <1                                                 

=> A<1


 

Hội Pháp Sư Fairy Tall
Xem chi tiết
vũ minh đức
Xem chi tiết
Nguyễn Minh Quang
18 tháng 7 2021 lúc 20:38

ta có 

\(B=1+\left(1-\frac{1}{2}\right)+..+\left(1-\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}=A\)

Vậy A=B

Khách vãng lai đã xóa
Đô Mỹ Diệu Linh
Xem chi tiết
Trà My Phạm
Xem chi tiết
ST
13 tháng 3 2017 lúc 11:51

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)

=> \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 3+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

=> \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 3+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

=> \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 3+1-\frac{1}{50}=4-\frac{1}{50}< 4\)

Vậy \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 4\)

tranbinh1512
Xem chi tiết