Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn đình quý
Xem chi tiết
trịnh xuân phương nam
Xem chi tiết
nguyễn ngọc quyền linh
Xem chi tiết
thanh an
2 tháng 1 2017 lúc 20:38

đáp số: a=7 ; b=5 ; c=1 ; d=6

    4751 + 1367 = 5018

pham thi khanh huyen
Xem chi tiết
pham thi khanh huyen
2 tháng 12 2016 lúc 19:06

cac ban giup minh giai bai toan nay cay

Cao Thị Nhi
Xem chi tiết
Ngô Như Quỳnh
Xem chi tiết
Ngô Như Quỳnh
7 tháng 12 2016 lúc 11:13

4ab.c+c3d.a=b0c8

lại tiến bình
Xem chi tiết
Trịnh Thành Công
25 tháng 6 2017 lúc 21:46

Câu 1:

a)BĐVT:\(\left(A+B\right)^2=A^2+2AB+B^2\)

                              \(=A^2-2AB+B^2+4AB\)

                                \(=\left(A-B\right)^2+4AB\left(BVT\right)\)

b)\(BĐVT:\left(A-B\right)^2=A^2-2AB+B^2\)

                                      \(=A^2+2AB+B^2-4AB\)

                                        \(=\left(A+B\right)^2-4AB\left(BVP\right)\)

Lê Thanh Trà
Xem chi tiết
Xem chi tiết
☆MĭηɦღAηɦ❄
26 tháng 8 2020 lúc 21:40

Ta có : 

\(\frac{4ab+1}{4ab}=1+\frac{1}{4ab}\ge1+\frac{1}{\left(a+b\right)^2}\)

\(\Rightarrow\frac{4ab}{4ab+1}\le\frac{1}{1+\frac{1}{\left(a+b\right)^2}}\)

Tương tự ta được : 

\(\frac{4bc}{4bc+1}\le\frac{1}{1+\frac{1}{\left(b+c\right)^2}};\frac{4ca}{4ca+1}\le\frac{1}{1+\frac{1}{\left(c+a\right)^2}}\)

\(\Rightarrow VP\le\frac{1}{1+\frac{1}{\left(a+b\right)^2}}+\frac{1}{1+\frac{1}{\left(b+c\right)^2}}+\frac{1}{1+\frac{1}{\left(c+a\right)^2}}\)

BĐT cần chứng minh tương đương với 

\(a+b+c\ge\frac{1}{1+\frac{1}{\left(a+b\right)^2}}+\frac{1}{1+\frac{1}{\left(b+c\right)^2}}+\frac{1}{1+\frac{1}{\left(c+a\right)^2}}\) (1)

Đặt \(a+b=x;b+c=y;c+a=z\)

\(x,y,z>0;x+y+z=2\left(a+b+c\right)\)

\(\Rightarrow\left(1\right)\Leftrightarrow x+y+z\ge2\left(\frac{1}{1+\frac{1}{x^2}}+\frac{1}{1+\frac{1}{y^2}}+\frac{1}{1+\frac{1}{z^2}}\right)\)

\(VP=\frac{2x^2}{x^2+1}+\frac{2y^2}{y^2+1}+\frac{2z^2}{z^2+1}\le\frac{2x^2}{2x}+\frac{2y^2}{2y}+\frac{2z^2}{2z}=x+y+z=VT\)

Vậy BĐT được chứng minh

Dấu "=" xảy ra khi \(x=y=z=1\Leftrightarrow a=b=c=\frac{1}{2}\)

Khách vãng lai đã xóa
yen dang
27 tháng 8 2020 lúc 20:56

\(\frac{4ab}{4ab+1}< =\frac{4ab}{2\sqrt{4ab}}=\sqrt{ab}\)

CMTT =>\(\hept{\begin{cases}\frac{4bc}{4bc+1}< =\sqrt{bc}\\\frac{4ac}{4ac+1}< =\sqrt{ac}\end{cases}}\)

Ta có \(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ac}\)

=\(\frac{1}{2}\left(\left(a+2\sqrt{ab}+b\right)+\left(b+2\sqrt{bc}+c\right)+\left(c+2\sqrt{ac}+a\right)\right)\)

=\(\frac{1}{2}\left(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\right)>=0\)

dấu = xảy ra khi a=b=c.

\(=>a+b+c>=\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)\(>=\frac{4ab}{4ab+1}+\frac{4bc}{4bc+1}+\frac{4ac}{4ac+1}\)

Khách vãng lai đã xóa