Cho \(U_1=\frac{1}{1\cdot3\cdot5}\); \(U_2=\frac{1}{1\cdot3\cdot5}+\frac{1}{3\cdot5\cdot7}\); \(U_3=\frac{1}{1\cdot3\cdot5}+\frac{1}{3\cdot5\cdot7}+\frac{1}{5\cdot7\cdot9}\)
a) Lập quy trình tổng quát tính Un
b) Tính U50, U60
c) Tính U1002
Cho \(S_1-S_2+S_3-S_4+S_5=\frac{m}{n}\) với m, n nguyên tố cùng nhau. Biết:
\(S_1=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)
\(S_2=\frac{1}{2\cdot3}+\frac{1}{2\cdot4}+\frac{1}{2\cdot5}+\frac{1}{2\cdot6}+\frac{1}{3\cdot4}+\frac{1}{3\cdot5}+\frac{1}{3\cdot6}+\frac{1}{4\cdot5}+\frac{1}{4\cdot6}+\frac{1}{5\cdot6}\)
\(S_3=\frac{1}{2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot5}+\frac{1}{2\cdot3\cdot6}+\frac{1}{2\cdot4\cdot5}+\frac{1}{2\cdot4\cdot6}+\frac{1}{2\cdot5\cdot6}+\frac{1}{3\cdot4\cdot5}+\frac{1}{3\cdot4\cdot6}+\frac{1}{3\cdot5\cdot6}+\frac{1}{4\cdot5\cdot6}\)
\(S_4=\frac{1}{2\cdot3\cdot4\cdot5}+\frac{1}{2\cdot3\cdot4\cdot6}+\frac{1}{2\cdot3\cdot5\cdot6}+\frac{1}{2\cdot4\cdot5\cdot6}+\frac{1}{3\cdot4\cdot5\cdot6}\)
\(S_5=\frac{1}{2\cdot3\cdot4\cdot5\cdot6}\)
Tính \(m+n\)
Tính \(A=\frac{1}{1\cdot2\cdot3\cdot4\cdot5}+\frac{1}{2\cdot3\cdot4\cdot5\cdot6}+...+\frac{1}{26\cdot27\cdot28\cdot29\cdot30}\)
Tính tổng A=\(\frac{1}{1\cdot2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4\cdot5}+\frac{1}{3\cdot4\cdot5\cdot6}+...+\frac{1}{27\cdot28\cdot29\cdot30}\)
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{27.28.29.30}\)
\(A=\frac{1}{4.6}+\frac{1}{10.12}+\frac{1}{18.20}+...+\frac{1}{810.812}\)
.......
~ Chúc học tốt ~
Ai ngang qua xin để lại 1 L - I - K - E
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+.....+\frac{1}{27.28.29.30}\)
\(3A=3.\left(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+......+\frac{1}{27.28.29.30}\right)\)
\(3A=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+..........+\frac{3}{27.28.29.30}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+........+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{28.29.30}\)
\(3A=\frac{1}{6}-\frac{1}{24360}\)
\(3A=\frac{1353}{8120}\)
\(A=\frac{1353}{8120}:3\)
\(A=\frac{451}{8120}\)
Ta có:3A=\(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+.............+\frac{3}{27.28.29.30}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...........+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{28.29.30}\)
\(3A=\frac{1353}{8120}\Rightarrow A=\frac{451}{8120}\)
Tính Tổng :
\(A=\frac{1}{1\cdot2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4\cdot5}+\frac{1}{3\cdot4\cdot5\cdot6}+...+\frac{1}{47\cdot48\cdot49\cdot50}\) mọi người giúp em với ạ
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+....+\frac{1}{47.48.49.50}\)
\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{47.48.49}-\frac{1}{48.49.50}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{48.49.50}\right)\)
\(=\frac{1}{3}.\frac{6533}{39200}=\frac{6533}{117600}\)
\(P=\frac{1}{1\cdot2\cdot3\cdot\text{4}}+\frac{1}{2\cdot3\cdot4\cdot5}+.........+\frac{1}{102\cdot103\cdot104\cdot105}\)
Chứng tỏ \(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}=\frac{4949}{19800}\)
Ta có 1/1.2-1/2.3=2/1.2.3;1/2.3-1/3.4=2/2.3.4 .....1/98.99-1/99.100=2/98.99.100 2A=2/1.2.3+2/2.3.4+....+2/98.99.100 = 1/1.2-1/2.3+1/2.3-1/3.4+...+1/98.99-1/99.100 = 1/2-1/99.100 = 4949/9900 A =4949/19800
\(\frac{1}{1\cdot2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4\cdot5}+...+\frac{1}{2011\cdot2012\cdot2013\cdot2014}\)
1/1.2.3.4+1/2.3.4.5+....+1/2011.2012.2013.2014
Gọi dãy số trên là A , ta có :
3A=3/1.2.3.4+3/2.3.4.5+....+3 / 2011.2012.2013.2014
3A=1/1.2.3-1/2.3.4+1/2.3.4-......-1/2011.2012.2013+1 / 2011.2012.2013 - 1/2012.2013.2014
3A=1/1.2.3-1/2012.2013.2014
phần còn lại bn tính tiếp đi
Tính nhanh
B=\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)
TÍNH TỔNG:
\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+.....+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)