Tìm số nguyên x để: 6 nhân căn bậc hai của x +1 chia hết cho 2 nhân căn bậc hai của x -3
P bằng căn x trên căn bậc hai của x trừ 1 cộng với 3 trên căn bậc hai của x cộng với 1 trừ cho 6 nhân căn bậc hai của x trừ cho 4 trên căn bậc hai của x trừ cho 1.
a) Rút gọn P
b) Tính giá trị của P khi x = 9
Cho A= căn bậc hai của x+1/căn bậc hai của x-2 . Tìm số nguyên x để A có giá trị là một số nguyên
Tìm giá trị nguyên của x để biểu thức A = 4 căn bậc hai của x + 6/ 3 căn bậc hai của x -2
Tìm số thực x để (x + căn bậc hai của 15) và (1/x - căn bậc hai của 15) đều là số nguyên.
tìm x nguyên ,căn bậc 2 của x+1/căn bậc hai của x-3 nguyên
giải pt sau
x + căn bậc hai của ( x + 2 ) = 2 nhân căn bậc hai của ( x + 1 )
1. Tìm m để pt sau có nghiệm.
Căn bậc hai của[ (x^2)+x+1] -căn bậc hai của [(x^2)-x+1]=m.
2. Biện luận theo m số nghiệm pt.
Căn bậc hai (x-1) + căn bậc hai (3-x) - căn bậc hai [(x-1)(3-x)]=m
giúp mình nhanh với khoảng đến hơn 4h thôi nhé mình sắp đi hc r
tìm x : a/ căn bậc hai của x=x; b/ căn bậc hai của x < căn bậc hai của 2x-1 ; d/ căn bậc hai của x+2 = căn bậc hai của 4-x
so sánh : a/ căn bậc hai của 3-5 và -2 ; b/ căn bậc hai của 2+ căn bậc hai của 3 và 2
Đem nhân số dương x với 2, và tích số này sau đó chia cho 3. Biết số dương là căn bậc hai của kết quả hai phép tính trên bằng x, hãy tìm giá trị của x ?
- Vì khi đem nhân số dương x với 2, sau đó tích số này sau đó chia cho 3 và số dương đó là căn bậc hai của kết quả hai phép tính trên bằng x nên:
- Ta có: \(x=\sqrt{\frac{2x}{3}}\)( * )
\(\Rightarrow x^2=\frac{2x}{3}\)
\(\Leftrightarrow3x^2=2x\)
\(\Leftrightarrow3x^2-2x=0\)
\(\Leftrightarrow x.\left(3x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\3x=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{2}{3}\end{cases}}\)
- Thử lại:
+ Với \(x=2\)thay vào phương trình ( * ), ta có:
\(\sqrt{\frac{2.2}{3}}=\sqrt{\frac{4}{3}}=\frac{2}{\sqrt{3}}\ne2\)
Vậy \(x=2\)loại
+ Với \(x=\frac{2}{3}\)thay vào phương trình ( * ), ta có:
\(\sqrt{\frac{2.\frac{2}{3}}{3}}=\sqrt{\frac{2}{3}.\frac{2}{3}}=\frac{2}{3}\)
Vậy \(x=\frac{2}{3}\)thỏa mãn
Vậy \(S=\left\{\frac{2}{3}\right\}\)