chung to rang 1+7+72+73+74+....+7300 khong chia het cho 19
Cho so a= 36.q + 15 voi q la so tu nhien
A. Chung to rang a khong chia het cho 2
B. Chung to rang a chia het cho 3 va a khong phai la so nguyen to
biet A =717+17x3 -1 la so chia het cho 9.Co the su dung ket qua nay de chung to rang B= 718 +18x3-1 cung chia het cho 9 khong
cho b la mot so tu nhien khong chia het cho 3 . chung to rang b^2 -1 chia het cho 3
b không chia hết cho 3 nên ta xét 2 trường hợp:
TH1: b chia 3 dư 1 nên b = 3k + 1
\(\Rightarrow\left(3k+1\right)^2-1=9k^2+6k+1-1=3k\left(3k+3\right)\)
Vì \(3⋮3\)
Do đó \(3k\left(3k+2\right)⋮3\Rightarrow\left(3k+1\right)^2-1⋮3\)
TH2: b chia 3 dư 2 nên b = 3k + 2
\(\Rightarrow\left(3k+2\right)^2-1=9k^2+12k+4-1=3k\left(3k+4\right)\)
vì \(3⋮3\)
Do đó \(3k\left(3k+4\right)⋮3\Rightarrow\left(3k+2\right)^2-1⋮3\)
Vậy với b là một số tự nhiên không chia hết cho 3 thì \(b^2-1⋮3\)
b là số tự nhiên không chia hết cho 3 => b có dạng 3k+1 hoặc 3k+2 (k thuộc N*)
Th1: b=3k+1=> b^2-1=9.k^2+6k+1-1=9.k^2+6k chia hết cho 3
Th2: b=3k+2 => b^2-1=9.k^2+12k+4-1=9.k^2+12k+3 chia hết cho 3
Vậy với mọi b là số tự nhiên không chia hết cho 3 thì b^2-1 chia hết cho 3
b là số tự nhiên không chia hết cho 3 => b có dạng 3k+1 hoặc 3k+2 (k thuộc N*)
Th1: b=3k+1=> b^2-1=9.k^2+6k+1-1=9.k^2+6k chia hết cho 3
Th2: b=3k+2 => b^2-1=9.k^2+12k+4-1=9.k^2+12k+3 chia hết cho 3
Vậy với mọi b là số tự nhiên không chia hết cho 3 thì b^2-1 chia hết cho 3
chung to rang (2n+1)x(2n-1) khong chia het cho 2
cho biet a^n_b^n chia het cho a_b
chung minh rang 2^n +1 chia khong het cho 7
Cho so tu nhien a=1.2.3.4....100+16
A.chung to rang a chia het cho 4
B. Chung to rang a khong chia het cho 3
chung to rang n2 + 2 chia het cho 3 voi n khong chia het cho 3
chung minh rang [(1+2+3)-7] khong chia het cho 10 voi n giong N
[(1+2+3)-7]=6-7=-1 không chia hết cho 10
chung to rang A=n2+n+1 khong chia het cho 15
A chia hết cho 15 => A không chia hết cho 3 hoặc 5
*xét A không chia hết cho 5
A=n2+n+1=n.n+n+1=n(n+1)+1
n(n+1) chỉ có thể tận cùng = 2,6,0,
=>n(n+1)+1 chỉ có thể có tận cùng =3,7,1
mà số có tận cùng = 3,7,1 không chia hết cho 5 => A không chia hết cho 15
A=n(n+1)+1
n(n+1) h hai so tu nhien lien tiep la so chan ko bao gio co tan cung =4
=> A la so le ko co tan cung la 5 => ko chia het cho 5=> ko chia het cho 15