Tìm n thuộc Z sao cho
61-(n-1)^2 là số chính phương
mọi người giúp mk vs nha,mk đang cần gắp lắm ạ
1.chứng minh rằng với mọi n thuộc N số A=9n^2+27n+7 không thể là lập phương đúng
2.tìm n thuộc N sao cho 9+2^n là số chính phương
3.tìm n thuộc N sao cho 3^n+19 là số chính phương
4.tìm n thuộc Z sao cho n^4+2n^3+2n^2+n+7 là số chính phương
Tìm n thuộc Z sao n2-n+13 là số chính phương
a)
Tìm n thuộc Z sao cho: n+2/3n-1 có GTLN.Tìm GT đó
b)
Cho M=a^2+b^2 với a,b thuộc N;a,b lẻ.Hỏi M có là số chính phương ko?Vì sao?
Tìm n thuộc N sao cho n ^ 2 + n + 1589 là số 1 chính phương
Để \(n^2+n+1589\) là số chính phương thì \(n^2+n+1589=a^2\left(a\in Z\right)\)
\(\Leftrightarrow4n^2+4n+6356=4a^2\)
\(\Leftrightarrow\left(4n^2+4n+1\right)+5355=\left(2a\right)^2\)
\(\Leftrightarrow\left(2n+1\right)^2-\left(2a\right)^2=-5355\)
\(\)\(\Leftrightarrow\left(2n-2a+1\right)\left(2n+2a+1\right)=-5355\)
Từ đây xét 2n - 2a + 1 ; 2n + 2a + 1 là các ước của - 5355 là ra
\(n^2+n+1589\)
\(n^2+n+1589=m^2\)
\(\Rightarrow\left(4n^2+1\right)^2+6355=4m^2\)
\(\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=6355\)
\(2m+2n+1>2m-2n-1>0\)
Ta viết:\(\left(2m+2n+1\right)\left(2m-2n-1\right)=6355\cdot1=1271\cdot5=205\cdot31=155\cdot414\)
\(\Rightarrow n=\text{ 1588,316,43,28}\)
Giúp cai nka tối mik phải đi học
Bài 1:CMR các số sau là số chính phương:
a, A= 1...1(2018 số 1) * 2...2(2019 số 2) *5
b,n*(n+1)*(n+2)*(n+3)+1 biết n thuộc Z+
Bài 2:CMR: vs n thuộc Z+ và n>6 thì số A là số chính phương
A=1+ 2*6*10*....*(4n-2) / (n+5)*(n+6)*....*(2n)
Bài 3: Tìm x,y thuộc Z thỏa mãn x^2+x+6=y^2
Bài 4 Cho m,n thuộc Z+ thỏa mãn 3m^2+m=4n^2+n. CMR
a, (m-n,3m+3n+1)=9
(n-m,4m+4n+1)=1
b,m-n vs 3m+3n+1 và 4m+4n+1 đều lá số chính phương
Bài 1:CMR các số sau là số chính phương:
a, A= 1...1(2018 số 1) * 2...2(2019 số 2) *5
b,n*(n+1)*(n+2)*(n+3)+1 biết n thuộc Z+
Bài 2:CMR: vs n thuộc Z+ và n>6 thì số A là số chính phương
A=1+ 2*6*10*....*(4n-2) / (n+5)*(n+6)*....*(2n)
Bài 3: Tìm x,y thuộc Z thỏa mãn x^2+x+6=y^2
Bài 4 Cho m,n thuộc Z+ thỏa mãn 3m^2+m=4n^2+n. CMR
a, (m-n,3m+3n+1)=9
(n-m,4m+4n+1)=1
b,m-n vs 3m+3n+1 và 4m+4n+1 đều lá số chính phương
Giúp cái nha chiều đi học rồi
cho a,b thuộc n chứng mình rằng nếu ab chia hết cho 2 thì tìm được số c thuộc z sao cho a^2+b^2+c^ là số chính phương
cho a,b thuộc n chứng minh rằng nếu a.b chia hết cho 2 thì tìm được số c thuộc z sao cho a^2+b^2+c^2 là số chính phương
tìm n thuộc Z để các số sau là số chính phương n^4+n^3+n^2
Ta có: \(n^4+n^3+n^2=n^2\left(n^2+n+1\right)\)
Theo đề ra thì \(n^2\left(n^2+n+1\right)\) mà \(n^2\)là một số chính phương \(\Rightarrow n^2+n+1\)là 1 số chính phương.
Gọi \(n^2+n+1=k^2\) =>\(4n^2+4n+1+3\)= \(4k^2\)
=> \(\left(2n+1\right)^2+3=4k^2\) => \(\left(2k-2n-1\right)\left(2k+2n+1\right)=3\)
\(\Leftrightarrow2k-2n-1;2k+2n+1\inƯ\left(3\right)=\left\{3;1;-3;-1\right\}\)Và \(2k-2n-1;2k+2n+1\)phải đồng âm hoặc đồng dương,
Ta có bảng sau:
\(2k-2n-1\) | 1 | 3 | -1 | -3 |
\(2k+2n+1\) | 3 | 1 | -3 | -1 |
\(2k-2n\) | 2 | 4 | 0 | -2 |
\(2k+2n\) | 2 | 0 | -4 | -2 |
\(n\) | 0 | -1 | -1 | 0 |
Vậy n thỏa mãn đề bài là n=0 hoặc n=-1