Cho a,b là số nguyên và a,b không chia hết cho 3. Chứng minh rằng \(a^2+2021b^2⋮3\)
a)cho a, b là các số nguyên, chứng minh rằng nếu a chia cho 13 dư 2 và b chia cho 13 dư 3 thì a^2 + b^2 chia hết cho 13
b) Cho a,b là các số nguyên . Chứng minh rằng nếu a chia cho 19 dư 3 , b chia cho 19 dư 2 thì a^2 + b^2 + ab chia hết cho 19
c) chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
1. Tìm các số nguyên x, y để :
x,(y-5) = -9
2. Chứng minh rằng với mọi số nguyên n thì :
a) A = (n+6).(n+7) luôn luôn chia hết cho 2
b) n2+n+2017 không chia hết cho 2
3. Cho a và b là hai số nguyên không chia hết cho 3 nhưng có cùng số dư khi chia cho 3. Chứng minh rằng hai số đó trừ 1 lại chia hết cho 3.
4. Cho A = 20+21+22+...+22017. Hỏi A có là số chính phương không? Vì sao ; A+1 có là số chính phương không?
Chứng minh rằng:
a) Cho a và b là số nguyên không đối nhau. Chứng minh rằng ( a mũ 2 + a.b + 2.a + 2.b ) chia hết cho ( a + b )
b) Chứng tỏ rằng tổng của ba số nguyên liên tiếp thì chia hết cho 3
Các bạn giúp mình với các bạn ghi đầy đủ các bước nha. Mình xin chân thành cảm ơn
a, a2 + ab + 2a + 2b
= a(a + b) + 2(a + b)
= (2 + a)(a + b) chia hết cho a + b
b, Gọi 3 số nguyên liên tiếp là a; a + 1; a + 2
Ta có:
a + (a + 1) + (a + 2) = 3a + 3 = 3(a + 1) chia hết cho 3
a)
=a^2+a.b+2a+2b
=a.a+a.b+2a+2b
=a(a+b)+2(a+b)
=(a+2).(a+b)
vì (a+b)chia hết cho (a+b)
=>a+2chia hết cho a+b
=>tổng (2+a)(a+b)=(a^2+a.b+2a+2b)chia hết cho (a+b)
b)
gọi 3 số nguyên liên tiếp là a;a+1;a+2
=>tổng là a+(a+1)+(a+2)
=a.a.a+3
=> tổng 3 số liên tiếp thì chia hết cho 3
\(a^2+a.b+2a+2b\)
\(=\left(a^2+a.b\right)+\left(2a+2b\right)\)
\(=\left(a.a+a.b\right)+\left(2a+2b\right)\)
\(=a.\left(a+b\right)+2.\left(a+b\right)\) (Theo tính chất phân phối)
Vì a.(a+b) chia hết cho (a+b), 2.(a+b) chia hết cho (a+b) nên a.(a+b)+2.(a+b) chia hết cho a+b hay \(a^2+ab+2a+2b\)chia hết cho \(a+b\)
Cho a,b là các số nguyên thỏa mãn (a^2+b^2) chia hết cho 3.Chứng minh rằng a và b cùng chia hết cho 3
Ta có a^2 luôn chia 3 dư 1 hoặc 0 b^2 luôn chia 3 dư 1
=> a^2 + b^2 chia 3 dư 2 hoặc 0 mà theo đề bài a^2 + b^2 chia hết cho 3 nên a^2 chia hết cho 3 và b^2 chia hết cho 3
=> a,b đều chia hết cho 3
Vì số chính phương chia 3 dư 1 hoặc 0
Do đó các cặp số dư khi chia lần lượt a2 và b2 cho 3 là
(0;0) (0;1) (1;0) (1;1)
Vì a2+b2chia hết 3 nên ta nhận cặp (0;0) => a,b đều chia hết 3
k mình nhé
Cho đa thức P(x)=x3-a2x+2016b với a, b là số nguyên và a không chia hết cho 3. Chứng minh rằng P(x) chia hết cho 3 với mọi x nguyên
P(x)=x^3-a^2.x+2016.b
Do 2016b chia hết cho 3 với mọi số nguyên b,ta chỉ cần xét x^3-a^2.x
có:x^3-a^2.x=x(x^2-a^2)=x(x+a)(x-a)
+nếu x chia hết cho 3=>P(x) chia hết cho 3
+nếu x và a chia 3 có cùng số dư=>(x-a)chia hết cho 3=>p(x) chia hết cho 3
+nếu x và a có số dư khác nhau khi chia hết cho 3(1 và 2)=>(x+a) chia hết cho 3=>P(x) chia hết cho 3
=>ĐPCM
Cho a,b là các số nguyên:
a,chứng minh rằng nếu a chia 13 dư 2 và b chia 13 dư 3 thì a^2 + b^2 chia hết cho 13.
b, chứng minh rằng nếu a chia 19 dư 3, b chia cho 19 dư 2 thì a^2 + b^2 + ab chia hết cho 19
bài này thử là nhanh nhất (hi hi , mình đùa vui thôi chứ minh ko bít làm)
Câu a) a chia 13 dư 2 thì a2 chia 13 dư 4
b chia 13 dư 3 thì b2 chia 13 dư 9. Vậy a2 + b2 chia hết cho 13
Câu b) tương tự nhé bạn.
Cho 2 số nguyên a và b không chia hết cho 3 và khi chia cho 3 có cùng số dư. Chứng minh rằng ab-1 chia hết cho 3
Ta có:a ko chia hết cho 3
b ko chia hết cho 3
Và ki a và b chia 3 có cùng số dư
Suy ra: Trường hợp 1:a và b có dạng 3k+1
\(\Rightarrow ab-1=\left(3k+1\right)\left(3k+1\right)-1\)
\(\Rightarrow ab-1=9k^2+3k+3k+1-1\)
\(ab-1=9k^2+3k+3k\)
\(\Rightarrow ab-1=3\left(3k^2+k+k\right)⋮3\)(1)
Trường hợp 1:a và b có dạng 3k+2
\(\Rightarrow ab-1=\left(3k+2\right)\left(3k+2\right)-1\)
\(\Rightarrow ab-1=9k^2+6k+6k+4-1\)
\(ab-1=9k^2+6k+6k+3\)
\(\Rightarrow ab-1=3\left(3k^2+2k+2k+1\right)⋮3\)(2)
Từ (1) và (2)
Suy ra: ab-1 chia hết cho 3 (điều phải chứng minh)
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6
a, Chứng minh rằng nếu a không chia hết cho 3 thì a2 chia 3 dư 1
b, Cho a, b là các số nguyên thõa mãn ( a2 + b2 ) chia hết cho 3. Chứng minh rằng a và b cừng chia hết cho 3
c, Cho A = 1 + 3 +32+33+34 +........+32012 và B = 32013 : 2. Tính B-A
d, Cho p nguyên tố , p>3 thì p2 + 2003 là số nguyên tố hay hợp số
các bạn làm chi tiết lời giải giúp tôi ai làm đúng tớ tích cho