CMR:
9n+1(n thuộc N) không thể là số chính phương
mọi người giúp mk vs nha,mk đang cần gắp lắm ạ
1.chứng minh rằng với mọi n thuộc N số A=9n^2+27n+7 không thể là lập phương đúng
2.tìm n thuộc N sao cho 9+2^n là số chính phương
3.tìm n thuộc N sao cho 3^n+19 là số chính phương
4.tìm n thuộc Z sao cho n^4+2n^3+2n^2+n+7 là số chính phương
CMR: n.(n+1) và n.(n+2) không thể là các số chính phương. (với n thuộc N*)
Cho n thuộc N và n-1 không chia hết cho 4. CMR 7n + 2 không thể là số chính phương.
Cho n thuộc N và n+1 là số chính phương. CMR : ( n+2 ).( n+3 ).( n+4 ) không phải là số chính phương
cmr vs mọi n thuộc N số a=9n^2+27n+7 ko thể là lập phương đúng
Em mới học lớp 6,em giải được bài này cho chị thì em là thần đồng.
1. Cho n lẽ. CMR: n2020 + 1 không phải số chính phương
2. Cho n thuộc Z. CM: A = n4 + 2n3 + 2n2 + n + 7 không phải là số chính phương
3. Cho n lẽ. CM : n3 + 1 không phải là số chính phương
1/ Xét \(\left(n^{1010}\right)^2=n^{2020}< n^{2020}+1=\left(n^{1010}+1\right)^2-2n^{1010}< \left(n^{1010}+1\right)^2\)
Vì \(n^{2020}+1\)nằm ở giữa 2 số chính phương liên tiếp là \(\left(n^{1010}\right)^2\)và \(\left(n^{1010}+1\right)^2\)nên không thể là số chính phương.
2/ Mình xin sửa đề là 1 tí đó là tìm \(n\inℤ\)để A là số chính phương nha bạn, vì A hoàn toàn có thể là số chính phương
\(A>n^4+2n^3+n^2=\left(n^2+n\right)^2,\forall n\inℤ\)
\(A< n^4+n^2+9+2n^3+6n^2+6n=\left(n^2+n+3\right)^2,\forall n\inℤ\)
Vì A bị kẹp giữa 2 số chính phương là \(\left(n^2+n\right)^2,\left(n^2+n+3\right)^2\)nên A là số chính phương khi và chỉ khi:
+) \(A=\left(n^2+n+1\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+1+2n^3+2n^2+2n\)
\(\Leftrightarrow n^2+n-6=0\Leftrightarrow\orbr{\begin{cases}n=2\\n=-3\end{cases}}\)
+) \(A=\left(n^2+n+2\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+4+2n^3+4n^2+4n\)
\(\Leftrightarrow3n^2+3n-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{5}}{2}\notinℤ\)---> Với n=-3;2 thì A là số chính phương.
3/ Bằng phản chứng giả sử \(n^3+1\)là số chính phương:
---> Đặt: \(n^3+1=k^2,k\inℕ^∗\Rightarrow n^3=k^2-1=\left(k-1\right)\left(k+1\right)\)
Vì n lẻ nên (k-1) và (k+1) cùng lẻ ---> 2 số lẻ liên tiếp luôn nguyên tố cùng nhau
Lúc này (k-1) và (k+1) phải là lập phương của 2 số tự nhiên khác nhau
---> Đặt: \(\hept{\begin{cases}k-1=a^3\\k+1=b^3\end{cases},a,b\inℕ^∗}\)
Vì \(k+1>k-1\Rightarrow b^3>a^3\Rightarrow b>a\)---> Đặt \(b=a+c,c\ge1\)
Có \(b^3-a^3=\left(k+1\right)-\left(k-1\right)\Leftrightarrow\left(a+c\right)^3-a^3=2\Leftrightarrow3ca^2+3ac^2+c^3=2\)
-----> Quá vô lí vì \(a,c\ge1\Rightarrow3ca^2+3ac^2+c^3\ge7\)
Vậy mâu thuẫn giả thiết ---> \(n^3+1\)không thể là số chính phương với n lẻ.
cmr phân số sau không thể viết được dưới dạng phân số hữu hạn B=9n+5/3n (n thuộc N*)
CMR: n!+2003 không phải là số chính phương với n thuộc N
Đặt A=n!+2003
Với n=0⇒A=2004 không phải số chính phương
Với n=1,2,3,4,5 ta có điều tương tự
Với n>5⇒n! tận cùng là 0
⇒A tận cùng là 3
Vậy A không là số chính phương với mọi n
cmr: số có dạng n^6-n^4+2.n^3+2.n^2 (n thuộc N và n>1) không phải là số chính phương
Đặt \(P=n^6-n^4+2n^3+2n^2\) thì
\(n^6-n^4+2n^3+2n^2=n^2\left(n^4-n^2+2n+2\right)=n^2\left[n^2\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\right]\)
\(=n^2\left(n+1\right)\left(n^3-n^2+2\right)=n^2\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\)
\(=n^2\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n+1\right)\left(n-1\right)\right]\)
\(P=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
Với \(n\in N;\) \(n>1\), ta có:
\(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)
và \(n^2-2n+2=n^2-2\left(n-1\right)\text{<}n^2\)
Theo đó, \(\left(n-1\right)^2\text{< }n^2-2n+2\text{< }n^2\)
Mặt khác, \(\left(n-1\right)^2\) và \(n^2\) là hai số chính phương liên tiếp
Do đó, \(n^2-2n+2\) không thể là một số chính phương.
Vậy, \(P\) không là số chính phương với mọi \(n\in N;\) \(n>1\).
Đặt \(P=n^6-n^4+2n^3+2n^2\) thì
\(n^6-n^4+2n^3+2n^2=n^2\left(n^4-n^2+2n+2\right)=n^2\left[n^2\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\right]\)
\(=n^2\left(n+1\right)\left(n^3-n^2+2\right)=n^2\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\)
\(=n^2\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n+1\right)\left(n-1\right)\right]\)
\(P=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
Với \(n\in N;\) \(n>1\), ta có:
\(n^2-2n+2=\left(n-1\right)^2+1>\left(n-1\right)^2\)
và \(n^2>n^2-2\left(n-1\right)=n^2-2n+2\)
Theo đó, \(n^2>n^2-2n+2>\left(n-1\right)^2\)
Mặt khác, \(\left(n-1\right)^2\) và \(n^2\) là hai số chính phương liên tiếp
Do đó, \(n^2-2n+2\) không thể là một số chính phương.
Vậy, \(P\) không là số chính phương với mọi \(n\in N;\) và \(n>1\)