Tìm n biết (2n+8) chia hết cho (2n-7)
Tìm số tự nhiên n, biết:
a, (n+8) chia hết cho (n-1)
b, (2n+7) chia hết cho (n-2)
c, (15-2n) chia hết cho (n+1)
a)\(n+8⋮n-1\)
\(\Leftrightarrow n-1+9⋮n-1\)
\(\Leftrightarrow9⋮n-1\)
\(Do\)\(n\in N\)\(\Rightarrow n-1\inƯ\left(9\right)=\left\{1;3;9\right\}\)
\(\Rightarrow n\in\left\{0;2;8\right\}\)
Các phần khác tương tự
a)\(N\in\left\{0;2;8\right\}\)
k mik nha
Học tốt
^_^
tìm số tự nhiên n biết:
a) 3n+2 chia hết cho n-1
b) 12-3n chia hết cho 8-n
c)n^2+2n+7 chia hết cho 2n+2
\(3n+2⋮n-1\)
\(3\left(n-1\right)+1⋮n-1\)
\(1⋮n-1\)hay \(n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
n - 1 | 1 | -1 |
n | 2 | 0 |
1 Tìm n thuộc z biết
a) 7 chia hết 2n +1
b) -8 chia hết n-3
c) n+5 chia hết n-6
d) 2n+3 chia hết n-1
đ) 2n-5 chia hết 2n+1
a) ta có Ư (7) = (-1;+1;-7;+7)
xét các trường hợp :
1: 2n + 1 = -1 => n= (-1) -1 :2=-1
2: 2n + 1 = 1 => n= 1 -1 : 2 = 0
3: 2n + 1 = -7 => n= -7 -1 : 2 = -3
4: 2n + 1 = 7 => n= 7 -1 : 2 = 3
mỏi quá trường hợp còn lại q1 tự sét nha
Câu a, trên làm rồi và câu b làm tương tự mk làm các câu sau nha
c) ta có n-6 chia hết cho n-6
=>n-6-(n+5) chia hết cho n-6
=>-11 chia hết cho n-6
Làm tương tự
d) 2n+3 chia hết cho n-1
=>2(n-1)+3+2 chia hết cho n-1
=> 5 chia hết cho n-1
Làm tt
Câu đ cũng tt nha bn
Có j ko hiu hỏi mk nha
Tìm n thuộc N,biết
a)17 chia hết cho n-3
b)n+8 chia hết cho n+7
c)2n-9 chia hết cho n-5
d)2n+16 chia hết cho n+7
e)n2-n-1 chia hết cho n+1
f)2n2+3n+2 chia hết cho n+1
a) Ta có:
17 chia hết cho n-3
=>n-3 thuộc Ư(17)
=>Ư(17)={-1;1;-17;17}
Ta có bảng sau:
n-3 | -1 | 1 | -17 | 17 |
n | 2 | 4 | -14 | 20 |
KL | tm | tm | loại | tm |
Vậy....
b) Ta có:
n+8 chia hết cho n+7
=>n+7+1 chia hết cho n+7
=>1 chia hết cho n+7
=>n+7 thuộc Ư(1)
=>Ư(1)={-1;1}
Xét:
+)n+7=-1=>n=-8(loại)
+)n+7=1=>n=-6(loại)
Vậy ko có gt nào của n thỏa mãn đk trên
c) Ta có:
2n-9 chia hết cho n-5
=>2(n-5)+1 chia hết cho n-5
=>1 chia hết cho n-5
=>n-5 thuộc Ư(1)
=>Ư(1)={-1;1}
Xét:
+)n-5=-1=>n=4(tm)
+)n-5=1=>n=6(tm)
Vậy...
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
Tìm số nguyên n sao cho a,2n-7 chia hết cho n+3 b, n+5 chia hết cho 2n-1 c, n-8 chia hết cho n+1
a/ Ta có: 2n-7=2n+6-13=2(n+3)-13
Nhận thấy, 2(n+3) chia hết cho n+3 với mọi n
=> Để 2n-7 chia hết cho n+3 => 13 chia hết cho n+3
=> n+3=(-13,-1,1,13)
n+3 | -13 | -1 | 1 | 13 |
n | -16 | -4 | -2 | 10 |
b, n+5 chia hết cho 2n-1 => 2(n+5) chia hết cho 2n-1 => 2n+10 chia hết cho 2n-1
2n-1 chia hết cho 2n-1
=>2n+10-(2n-1) chia hết cho 2n-1
=>2n+10-2n+1 chia hết cho 2n-1
=>11 chia hết cho 2n-1
=>2n-1 E Ư(11)={1;-1;11;-11}
=>n E {1;0;6;-5}
a) 2n-7 chia hết cho n+3
=> 2n+6-13 chia hết cho n+3
=> 2(n+3)-13 chia hết cho n+3
=> 2(n+3) chia hết cho n+3 ; 13 chia hết cho n+3
=> n+3 thuộc Ư(13)={-1,-13,1,13}
Ta có bảng :
n+3 | -1 | -13 | 1 | 13 |
n | -4 | -16 | -2 | 10 |
vậy n={-18,-16,-4,10}
b) Như ST làm
c) n-8 chia hết cho n+1
=> n+1-9 chia hết cho n+1
=> n+1 chia hết cho n+1 ; 9 chia hết cho n+1
=> n+1 thuộc Ư(9)={-1,-3,-9,1,3,9}
=> n={-2,-4,-10,0,2,8}
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
Tìm các số nguyên n biết :
a, n - 6 chia hết cho n - 1
b, 2n + 3 chia hết cho n + 1
c, 2n - 7 chia hết cho 2n - 1
Tìm các số nguyên n biết :
a, n - 6 chia hết cho n - 1
b, 2n + 3 chia hết cho n + 1
c, 2n - 7 chia hết cho 2n - 1
n - 6 ⋮ n - 1 <=> ( n - 1 ) + 7 ⋮ n - 1
Vì n - 1 ⋮ n - 1 , để ( n - 1 ) + 7 ⋮ n - 1 <=> 7 ⋮ n - 1 => n - 1 ∈ Ư ( 7 ) = { + 1 ; + 7 }
Ta có bảng sau :
n - 1 | 1 | - 1 | 7 | - 7 |
n | 2 | 0 | 8 | - 6 |
Vậy n ∈ { - 6 ; 0 ; 2 ; 8 }
Các câu sau tương tự