Tìm x,y biết |x-2011y|+<y-1> mũ 2012=0
<> là ngoặc
Tìm x,y biết:|x-2011y|+(y-1)2012=0
cần lời giải gấp ạ
Giải
Để |x-2011y|+(y-1)2012=0 thì cả hai số hạng trên cùng bằng 0 hoặc hai số hạng trên trái dấu nhau nhưng |x-2011y| luôn lớn hơn hoặc bằng 0, (y-1)2012 có số mũ chẵn nên cũng lớn hơn hoặc bằng 0
=> Cả hai số trên cùng dấu nên cả hai số trên đều phải bằng 0
=> (y-1)2012 =0 và |x-2011y|=0
=> y-1=0=>y=1 và |x-2011y|=0<=> |x-2011.1|=0=>x-2011=0=>x=2011
Vậy x=2011 và y=1
Ta dễ dàng nhận thấy :
\(|x-2011y|\ge0\)
\(\left(y-1\right)^{2012}\ge0\)
Cộng lại ta có :
\(|x-2011y|+\left(y-1\right)^{2012}\ge0\)
Dấu = xảy ra \(< =>\hept{\begin{cases}x-2011y=0\\y-1=0\end{cases}}\)
\(< =>\hept{\begin{cases}x-2011=0\\y=1\end{cases}}\)
\(< =>\hept{\begin{cases}x=2011\\y=1\end{cases}}\)
Tìm x,y biết : a) |x-2011y| + (y-1)2012 = 0
Bạn tham khảo ở đây nhé => https://olm.vn/hoi-dap/question/607241.html
\(\left\{\begin{matrix}\left|x-2011y\right|\ge0\\\left(y-1\right)^{2012}\ge0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x-2011y=0\\y-1=0\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}x-2011y=0\\y=1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x-2011=0\Rightarrow x=2011\\y=1\end{matrix}\right.\)
Vậy................
Tìm x, y
\(|x-2006y|+|x-2012|\le0.\)
\(|x-2011y|+|y-1|=0\)
a,\(|x-2006y|+|x-2012|\le0\left(1\right)\)
Có \(|x-2006y|\ge0\forall x,y\left(2\right)\)
Có\(|x-2012|\ge0\forall x\left(3\right)\)
Từ (1) , (2) , (3)=> \(|x-2006y|+|x-2012|=\)0(4)
Từ (2),(3),(4)
<=>\(\hept{\begin{cases}x-2006y=0\\x-2012=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2006y\left(5\right)\\x=2012\left(6\right)\end{cases}}\)
thay x=2012 vào (5) ta có
2012=2006y
<=>y=\(\frac{1006}{1003}\)
Vậy x=2012;y=\(\frac{1006}{1003}\)
b,\(|x-2011y|+|y-1|=0\left(7\right)\)
Có\(|x-2011y|\ge0\forall x,y\left(8\right)\)
\(|y-1|\ge0\forall y\left(9\right)\)
Từ (6),(7),(8)
<=>\(\hept{\begin{cases}x-2011y=0\\y-1=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2011y\left(10\right)\\y=1\left(11\right)\end{cases}}\)
thay y=1 vào (10) ta có
x=2011.1=2011
vậy x=2011;y=1
|x-2011y|+(y-1)2012=0
nhanh dùm nha
\(\left|x-2011y\right|+\left(x-1\right)^{2012}=0\)
Vì \(\left|x-2011y\right|\ge0\)và \(\left(x-1\right)^{2012}\ge0\)
\(\Rightarrow\left|x-2011y\right|+\left(y-1\right)^{2012}\ge0\)
Dấu "=" xảy ra khi:
\(\left|x-2011y\right|=0\)và \(\left(y-1\right)^{2012}=0\)
Xét (y-1)2012=0
=>y-1=0
=>y=0+1=1
Thay y=1 và |x-2011y|=0 ta có:
|x-2011.1|=0
=>|x-2011|=0
=>x-2011=0
=>x=0+2011=2011
Vậy y=1 và x=2011
|x-2011y|+(y-1)2012=0
ta thấy lx-2011yl; (y-1)2012 >/= 0
=> lx-2011yl=0 => x-2011y =>x=2011y=2011
và (y-1)2012=0 =>y-1=0 => y=1
mình cũng nghĩ như trà my nhưng sợ sai :))))
1/ Tìm x: (x-7)^x+1-(x-7)^x+11=0
2/ Tìm x: /x-2011y/+(y-1)^2012=0
3/ Tìm x,y:
a) /x+5/+(3y-4)^2012=0
b) (2x+1)^2+/2y-x/-8=12-5.2^2
4/
a) Tìm các số nguyên tố x,y sao cho: 51x+26y=2000
b) Tìm các số tự nhiện x,y biết: 7(x-2004)^2=23-y^2
c) Tìm x,y nguyên biết: x+y+3x-y=6
d) Tìm mọi sô nguyên tố thỏa mãn x^2-2y^2=1
\(\left(x+\frac{2}{3}\right)^{2012}+\left|y-\frac{1}{4}\right|^{2000}+\left(x-y-z\right)^{2014}=0\)
\(\Leftrightarrow\hept{\begin{cases}x+\frac{2}{3}=0\\y-\frac{1}{4}=0\\x-y-z=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{2}{3}\\y=\frac{1}{4}\\z=-\frac{11}{12}\end{cases}}\).
1 chia 2 bằng bao nhiêu các bạn chỉ giúp mình với
Câu 1: Tìm số nguyên x;y biết (x - 5) mũ 23 . (y + 2) mũ 7 = 0
Câu 2: Tìm giá trị nhỏ nhất của biểu thức A = (x - 2) mũ 2 + /y + 3/ + 7
Câu 3: Tìm số nguyên x sao cho 5 + x mũ 2 là bội của x + 1
Câu 4: Tìm các số nguyên x;y biết 5 + (x-2) . (y +1) = 0
Câu 5: Tìm x thuộc Z biết x - 1 là ước của x + 2
Câu 6: Tìm số nguyên m để m - 1 là ước của m + 2
Câu 7: Tìm x thuộc Z biết (x mũ 2 - 4) . (7 - x) = 0
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
2. \(A=\left(x-2\right)^2+|y+3|+7\)
Ta có :
\(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\|y+3|\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x-2\right)^2+|y+3|\ge0\forall x;y\)
\(\Rightarrow\left(x-2\right)^2+|y+3|+7\ge7\forall x;y\)
\(\Rightarrow A\ge7\forall x;y\)
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\|y+3|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)
Vậy GTNN của A là 7 khi \(\left(x;y\right)=\left(2;-3\right)\)
Cho x, y, z thỏa mãn : \(\frac{x}{2011}=\frac{y}{2012}=\frac{z}{2013}\) . Chứng minh rằng \(\frac{2012z-2013y}{2011}=\frac{2013x-2011z}{2012}=\frac{2011y-2012x}{2013}\)
Đặt \(\frac{x}{2011}=\frac{y}{2012}=\frac{z}{2013}=k\)
\(\Rightarrow\hept{\begin{cases}x=2011k\\y=2012k\\z=2013k\end{cases}}\)
+) Ta có : \(\frac{2012z-2013y}{2011}=\frac{2012.2013k-2013.2012k}{2011}=0\)
\(\frac{2013x-2011z}{2012}=\frac{2013.2011k-2011.2013k}{2012}=0\)
\(\frac{2011y-2012x}{2013}=\frac{2011.2012k-2012.2011k}{2013}=0\)
Do đó : \(\frac{2012z-2013y}{2011}=\frac{2013x-2011z}{2012}=\frac{2011y-2012x}{2013}\left(=0\right)\) ( đpcm )
Đặt \(\frac{x}{2011}=\frac{y}{2012}=\frac{z}{2013}=k\Rightarrow\hept{\begin{cases}x=2011k\\y=2012k\\z=2013k\end{cases}}\)
\(\frac{2012z-2013y}{2011}=\frac{2012\cdot2013k-2013k\cdot2012}{2011}=\frac{0}{2011}=0\)(1)
\(\frac{2013x-2011z}{2012}=\frac{2013\cdot2011k-2011\cdot2013k}{2012}=\frac{0}{2012}=0\)(2)
\(\frac{2011y-2012x}{2013}=\frac{2011\cdot2012k-2012\cdot2011k}{2013}=\frac{0}{2013}=0\)(3)
Từ (1) , (2) và (3) => đpcm