n2n+2009 chia het cho 10 voi moi n
Cho A=1+2+3+.....+n
a) Voi n=2009 Chung to :A chia het cho 2009 ,A ko chia het cho 2010
b) Chung minh (A-7) ko chia het cho 10 voi moi so tu nhien
a,CMR:Bieu thuc n(2n-3)-2n(n+1) luon chia het cho 5 voi moi n la so nguyen
b,CMR:Bieu thuc (n-1)(n+4)-(n-4)(n+10) luon chia het cho 6 voi moi so nguyen n
Cho A=n3+3n2+2n
a, CMR A chia het cho 3 voi moi so nguyen n
b, Tim gia tri nguyen duong cua n voi n<10 de A chia het cho 15
Cho A=n3+3n2+2n
a, CMR A chia het cho 3 voi moi so nguyen n
b, Tim gia tri nguyen duong cua n voi n<10 de A chia het cho 15
a) cm (2^4n+1)+3 chia het cho 5 voi moi n thuoc N
b) cm (2^4n+2)+1 chia het cho 5 voi moi n thuoc N
a) cách 1
2^4n = (24)n = ......6( có chữ số tận cùng là 6
=> (2^4n+1)+3= ......0( có chữ số tận cùng là 0)
=>(2^4n+1)+3 chia hết cho 5 với mọi n thuộc N?
cách 2
(2^4n+1)+3
=2*(24)n+3
=2*16n+3
=2(15 + 1)n+3
=2(5K+1) +3(với K là một số tự nhiên thuộc N)
=10K+5 chia hết cho 5
b ) áp dụng vào giống bài a thay đổi số thôi là đc
k mk nha!!!^~^
Ta có : (24.n+1)+3 = (.....6) + 1) + 3 = (.....0)
=> (24.n+1)+3 có chữ số tận cùng là 0
=> (24.n+1)+3 chia hết cho 5
CMR [(1+2+3+...+n)-7 ]khong chia het cho 10 voi moi gia tri cua n
ta có
1+2+3+...+n
=(n+1)n:2
mà (n+1)n có tận cùng là 0,2,6
=> (n+1)n:2 có tận cùng là 5,1,6,8,3
=>1+2+...+n-7 có tận cùng là 8,4,9,1,6
=>1+2+...+n-7 ko chia hết cho 10
chung minh rang : voi moi so tu nhien n thi (n+5).(n+10) chia het cho 2
Vì n là số tự nhiên => n có dạng 2k ; 2k+1
Ta có:
Với n=2k
=> (n+5).(n+10) = (2k+5).(2k+10)=(2k+5).2.(k+5) chia hết cho 2
Với n=2k+1
=> (n+5).(n+10)=(2k+1+5).(2k+1+10)=(2k+6).(2k+11)=2.(k+3).(2k+11) chia hết cho 2
=> Với mọi số tự nhiên n thì (n+5).(n+10) luôn chia hết cho 2
chung to
a)(5n+7).(4n+6)chia het cho 2 voi moi n E N
b)(8n+1).(6n+5)khong chia het cho 2 voi moi n E N
Cho A=(x+2009).(x+2010).Chung minh rang A chia het cho 2 voi moi so tu nhien x