Cho a = 111...11 ( n chữ số 1 ), b = 1000....0 (n-2 chữ số 1)
Cm ab+4 là số chính phương
Cho a = 111...11 ( n chữ số 1 ), b = 1000....0 (n-2 chữ số 1)
Cm ab+4 là số chính phương
1)Cho A=111...1(2n chữ số 1),B=111...1(n+1 chữ số 1),C=666...6(n chữ số 6)
C/m:A+B+C+8 là số chính phương
2)C/m:999...9000...025(n chữ số 9 và n chữ số 0)
999...98000...01(n chữ số 9 và n chữ số 0)
444...4888...89(n chữ số 4 và n chữ số 8)
111...1222...25(n chữ số 1 và n+1 chữ số 2)
3)Tìm số nguyên dương n để:
n^2-2006 là số chính phương
D=ab+4 là số chính phương với a=11....11 (n chữ số 1) b=10....011 (n-2 chữ số 0)
Cho a = 111...11 (2n chữ số 1); b = 444...44(n chữ số 4). CMR : a+b+1 là một số chính phương
a+b+1 = 111..11(2n) +444...44(n) + 1 =111...11(n).10n + 111...11(n) +4.111..11(n) +1
= 111...11(n).(10n-1) +6.111..11(n) +1
= 333...332(n) +2.333...33(n) +1 = ( 333.....3(n)+1)2 dpcm
Cho a = 111...11 (2n chữ số 1); b = 444...44(n chữ số 4). CMR : a+b+1 là một số chính phương
Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10^n + k
Vì :10^n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k^2+k+k = 9k^2 + 2k
Ta có 444........4<n chữ số 4>=4k
vậy a+b+1= 9k^2 +2k+4k+1 = <3k>^2 +2.3k.1 +1^2 = <3k +1>^2
Vậy a+b+1 là một số chính phương
Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10^n + k
Vì :10^n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k^2+k+k = 9k^2 + 2k
Ta có 444........4<n chữ số 4>=4k
vậy a+b+1= 9k^2 +2k+4k+1 = <3k>^2 +2.3k.1 +1^2 = <3k +1>^2
Vậy a+b+1 là một số chính phương
mjn nghj rang chac mjn da tra loj sai roi
Cho a =1111..111 (n chữ số 1) ; b = 100....05( n-1 chữ số 0)
Chứng minh rằng C= ab+1 là một số chính phương
Giúp mình với chiều nay mình thi HSG rùi.Giải hộ mình mình kết bạn nha.
1)Cho A=111.....11(n chữ số 1) B=1000.....05(n-1 chữ số 0)
với n là STN và n>1.CMR A.B+1 là hai số chính phương
2) tìm số tự nhiên n để 18n+3/21n+7 rút gọn được
Chứng minh số sau là số chính phương:
A= 111....11 - 222...2 (2n chữ số 1 và n chữ số 2)
B= 111.....1 + 444......44 + 1 (2n chữ số 1 và n chữ số 4)
A = 111...1000...0 + 111...1 - 222...2
(n cs 1)(n cs 0) (n cs 1) (n cs 2)
\(A=111...1\cdot10^n+111...1-222...2\)
(n cs 1) ( n cs 1 ) ( n cs 2 )
Đặt K = 111...1 ( n cs 1 ) => 9K + 1 = 10^n
=> A = K( 9k + 1 ) + K - 2K
= 9K^2 + K + K - 2K
= 9K^2 = (3K)^2
=> A là một số chính phương
B = 111...1000...0 + 111...1 + 444...4 + 1
(n cs 1)(n cs 0) (n cs 1) (n cs 4)
\(\Rightarrow B=111...1\cdot10^n+111...1+444...4+1\)
( n cs 1 ) ( n cs 1 ) ( n cs 4 )
Đặt K = 111...1 ( n cs 1 ) => 9K + 1 = 10^n
=> B = K( 9K + 1 ) + K + 4K + 1
= 9K^2 + 6K + 1
= ( 3K + 1 ) ^2
=> B là một số chính phương
cho số a = 111...............1(có n chữ số 1),số b =100.................05(n-1 chữ số 0)
biết n là số tự nhiên lớn hơn 1 . chứng minh rằng ab +1 là số chính phương
lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu