chứng minh tổng C=1+2+2^2+...+2^2011 chia hết cho 2015
Chứng minh tổng C=1+2+22+...+22011 chia hết cho 15
đồng dư thức nek, nó khá dài :))
C = 1 + 2 + 22 + ... + 22011
2C = 2 + 22 + 23 + ... + 22012
2C - C = 2 + 22 + 23 + ... + 22012 - 1 + 2 + 22 + ... + 22011
C = 22012 - 1
Ta có 22012 = 16503 đồng dư với 1 (mod 15)
=> 16503 - 1 đồng dư với 1 - 1 (mod 15)
=> 16503 - 1 đồng dư với 0 (mod 15)
=> 16503 - 1 chia hết cho 15
=> 22012 - 1 chia hết cho 15
=> C chia hết cho 15
C = 1 + 2 + 2^2 +..........+ 2^2011
C = ( 1 + 2 + 2^2 + 2^3 ) +............. + ( 2^2008 + 2^2009 + 2^2010 + 2^2011)
C = 1( 1 + 2 + 2^2 + 2^3 ) + ............ + 2 ^2008 ( 1 + 2 + 2^2 + 2^3 )
C = ( 1 + ............. + 2^2008) . 15
Vậy C chia hết cho 15
C = 1 + 2 + 22 + ... + 22011
2C = 2 + 22 + 23 + ... + 22012
2C - C = 2 + 22 + 23 + ... + 22012 - 1 + 2 + 22 + ... + 22011
C = 22012 - 1
Ta có 22012 = 16503 đồng dư với 1 (mod 15)
=> 16503 - 1 đồng dư với 1 - 1 (mod 15)
=> 16503 - 1 đồng dư với 0 (mod 15)
=> 16503 - 1 chia hết cho 15
=> 22012 - 1 chia hết cho 15
=> C chia hết cho 15
Vào lúc: 2015-12-01 23:32:48 Xem câu hỏi
papa ko làm thì thui z 2`
a) Đặt A = 1 + 2 + 22 + 23 ...+299 + 2100
2A = 2 + 22 + 23 + 24 + ... + 2100 + 2101
2A - A = 2 + 22 + 23 + 24 + ... + 2100 + 2101 - 1 + 2 + 22 + 23 ...+299 + 2100
A = 21001 - 1 < 2101
Vậy A < 2101
câu b tính trong ngoặc sau đó tính x như thường
Chứng minh tổng C = 1 + 2 + 22 + ... + 22011 chia hết cho 15.
1.Cho biểu thức:A=(a^2015+b^2015+c^2015)-(a^2011+b^2011+c^2011) với a,b,c là các số nguyên dương. Chứng minh rằng A chia hết cho 30
2. Tìm tất cả các số tự nhiên n sao cho n²-14n-256 là một số chính phương.
giúp mình với các bạn nhé!
chứng minh rằng với mọi a thuộc Z
1, a2015.b2011-a2011.b2015 chia hết cho 30
2, a4+6a3+11a2+6a chia hết cho 24
Chứng minh tổng \(K=1+2+2^2+...+2^{2011}\)chia hết cho 15
K = (1+2+2^2+2^3)+(2^4+2^5+2^6+2^7)+.....+(2^2008+2^2009+2^2010+2^2011)
= 15+2^4.(1+2+2^2+2^3)+......+2^2008.(1+2+2^2+2^3)
= 15+2^4.15+.....+2^2008.15
= 15.(1+2^4+....+2^2008) chia hết cho 15
Tk mk nha
2k= 2( 1+ 2 + 22 +.....+22011)
2k=2 + 22 + 23 +......+22012 -
k= 2 + 22 + .......+ 22011 + 1 k=22012-1= 22008 x 24 -1 = 22008 x 15 chia het cho 15
Chứng minh
a) 2^1000-1 chia hết cho 3
b) 19^45+19^30 chia hết cho 20
Bài 13 tìm số trong phép chia của số
a)A=48^15 cho cho 7
b) B=2011^2012 chia cho 7
c)C=2013^2011+2015^2013 chia cho 9
Chứng minh
a) \(2\equiv-1\left(mod3\right)\)
\(\Rightarrow2^{1000}\equiv\left(-1\right)^{1000}\equiv1\left(mod3\right)\Rightarrow2^{1000}-1\equiv0\left(mod3\right)\Rightarrowđpcm\)
b) \(19\equiv-1\left(mod20\right)\)
\(\Rightarrow19^{45}\equiv\left(-1\right)^{45}\equiv1\left(mod20\right);19^{30}\equiv\left(-1\right)^{30}\equiv1\left(mod20\right)\)
\(\Rightarrow19^{45}+19^{30}\equiv0\left(mod20\right)\Rightarrowđpcm\)
a) C = 3 + 3^2 + 3^3 + 3^4 + ....+ 3^119 + 3^120
chứng minh rằng tổng hiệu sau chia hết cho 4
b) chứng minh A = 1 + 5 +5^2 + ..... + 5^402 + 5^403 + 5^404 chia hết cho 31
c) chứng minh D = 4 + 4^2 + 4^3 + 4^4 +... + 4^2011 + 4&2012 chia hết cho 5
c)D=4+42+43+44+...+42012
D=(4+42)+(43+44)+...+(42011+42012)
D=4.5+43.5+45.5+...+42011.5
D=5.(4+43+42011)
=>D chia hết cho 5
=>ĐPCM
b)
A=(1+5+52)+(53+54+55)+...(5402+5403+5404)
A=31.1+31.53+...+31.5402
A=31.(1+53+...+5402)
=>A chia hết cho 31
=>Đâu phải con ma
cho tổng 1+3+3^2+...+3^2015 chứng minh tổng chia hết cho 13,40
Cho A = ( 2015.a2+ 2013.b+1) . ( 2011.a2+2009.b+2016).
Chứng minh rằng A chia hết cho 2 với mọi a,b đều là số tự nhiên.
Mấy cái bạn này dễ thì làm đi, đừng có mà nói khoác, bạn anh ak mk ko biết nên ko giúp đc, tuy cũng lớp 6...