Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Hoàng Nguyên
Xem chi tiết
Trần Ngọc Bảo Ngân
7 tháng 5 2017 lúc 20:25

\(=\frac{1.2}{99.100}\)

\(=\frac{2}{9900}=\frac{1}{4950}\)

Ukraine Akira
Xem chi tiết
Aikatsu mizuki
Xem chi tiết
Đức Phạm
13 tháng 7 2017 lúc 14:52

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+....+\frac{1}{98\times99}+\frac{1}{99\times100}\)

\(=\frac{2-1}{1\times2}+\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+....+\frac{99-98}{98\times99}+\frac{100-99}{99\times100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Tô Hoài An
13 tháng 7 2017 lúc 14:52

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Mạnh Lê
13 tháng 7 2017 lúc 14:53

Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

Nguyễn Quốc Huy
Xem chi tiết
Bùi Vương TP (Hacker Nin...
15 tháng 4 2017 lúc 8:29

kết quả cuối cùng là 198/100

kudo shinichi
15 tháng 4 2017 lúc 8:35

\(\frac{2}{1X2}+\frac{2}{2X3}+\frac{2}{3X4}+...+\frac{2}{98X99}+\frac{2}{99X100}\)

\(2X\left(\cdot\frac{1}{1X2}+\frac{1}{2X3}+...+\frac{1}{98X99}+\frac{1}{99X100}\right)\)

\(2X\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(2X\left(1-\frac{1}{100}\right)\)

\(2X\frac{99}{100}\)

\(\frac{99}{50}\)

bao binh
15 tháng 4 2017 lúc 8:52

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{98.99}+\frac{2}{99.100}\)

\(2.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(2.\left(1-\frac{1}{100}\right)\)

\(2.\frac{99}{100}\)\(=\frac{99}{50}\)

Nguyễn Thị Thanh Hải
Xem chi tiết
Kalluto Zoldyck
19 tháng 4 2016 lúc 20:20

A = 5(1/1.2 + 1/2.3 +......+ 1/99.100)

A = 5( 1 - 1/2 + 1/2 - 1/3 +........+ 1/99 - 1/100)

A = 5( 1 - 1/100)

A = 5 . 99/100

A = 99/20

** k mk nha!

Nguyễn Mạnh Tuấn
19 tháng 4 2016 lúc 20:23

\(\frac{5}{1\times2}+\frac{5}{2\times3}+...+\frac{5}{99\times100}=5\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\right)=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=5\left(1-\frac{1}{100}\right)=5\times\frac{99}{100}=\frac{99}{20}=4\frac{19}{20}\)

kẻ giấu tên
19 tháng 4 2016 lúc 20:24

A=5/1-5/2+5/2-5/3+...+5/99-5/100

A=5-(5/2-5/2+5/3-5/3+...5/99-5/99)-5/100

A=5-0+0+0+...+0-5/100

A=5-5/100

A=49/10=4,9

Phạm Hoàng Nguyên
Xem chi tiết
noo phúc trọng
15 tháng 4 2016 lúc 11:26

1/1x2 + 1/2x3 +1/3x4 + ......+1/98x99+1/99x100

=1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +......+ 1/98 - 1/99 + 1/99 + 1/100

=(1-1/100)+(1/2 - 1/2 ) + ( 1/3 - 1/3 ) + ...... + (1/98 - 1/98 ) + ( 1/99 - 1/99 )

= 100/100 - 1/100 + 0 + 0 +.....+ 0 + 0

=99/100

vậy GTBT = 99/100

O0o Nương Ưong  O0o
15 tháng 4 2016 lúc 11:23

bn vào câu hỏi tương tự là có

Nguyễn Việt Hoàng
15 tháng 4 2016 lúc 11:23

= 1/1 + 1/100

=1011/100

Tích nha

phuong Phạm
Xem chi tiết
Pham Van Hung
20 tháng 1 2019 lúc 21:50

\(x=-1\) nhé.

tran xuan quyet
Xem chi tiết
Xem chi tiết
Trần Thanh Phương
1 tháng 7 2019 lúc 17:30

Lời giải :

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

ko chép lại đề :

\(\frac{1}{1}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)+ ......... + \(\frac{1}{98}\)\(\frac{1}{99}\)\(\frac{1}{99}\)\(\frac{1}{100}\)

\(1-\frac{1}{100}\)

\(\frac{99}{100}\)

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Cbht